IOPSClence iopscience.iop.org

Home Search Collections Journals About Contactus My IOPscience

Quantum spinors and spin groups from quantum Clifford algebras

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1997 J. Phys. A: Math. Gen. 30 6451
(http://iopscience.iop.org/0305-4470/30/18/020)

View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 171.66.16.108
The article was downloaded on 02/06/2010 at 05:52

Please note that terms and conditions apply.



http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/30/18
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience

J. Phys. A: Math. Ger30 (1997) 6451-6474. Printed in the UK PIl: S0305-4470(97)81256-5

Quantum spinors and spin groups from quantum Clifford
algebras

A Criscuold;, M burdevict, M Rosenbaurhand J D Vegarg

i Instituto de Ciencias Nucleares, UNAM, Ap.Postal 70-54%xido, DF CP 04510, Kixico
1 Instituto de Materaticas, UNAM, Circuito Exterior, CU, Ndxico, DF CP 04510, Kixico

Received 24 January 1997, in final form 17 April 1997

Abstract. A general construction of multiparametric quantum spinors and corresponding
quantum Spip(2v — h, k) groups associated ta-APseudo)-Euclidean spaces is presented, and
their homomorphism to the respective SQroups is discussed. This construction is based on

a quantum Clifford algebra and is described in detail for involutive (pure twists) intertwining
braids. For general braid operators that admit abstract ‘volume elements’, a procedure is also
given for deriving quantum analogues of these groups.

1. Introduction

In their most general mathematical form, spinors were invented by Cartan in 1913, when
investigating linear representations fo simple groups. Cartan’'s geometrical approach to
spinors [1], which is based on their connection with isotropic geometrical elements, has
been of fundamental importance for the applications of spinors in the theory of relativity
[2] and for the development of the theory of twistors as a Robinson congruence of null lines
in Minkowski space [3]. Another impressive example of the usefulness of spinor analysis
in a new domain has been provided by Witten in his proof of the positive energy theorem
in Einstein’s relativity [4]. Nevertheless, the geometrical point of view of Cartan, which
stressed the equivalence of projective pure spinors of complex Euclidean spaces with null
planes of maximal dimension in these spaces, and the corresponding projective geometry,
remarkably rich and elegant, was primarily the subject of mathematical studies.

On the other hand, the modern Kaluza—Klein theories of unification of gauge fields and
gravitation, the theories of grand unification and, more recently, superfield, super-string,
membrane and conformal field theories have led to theories which make essential use of
geometries of more than four dimensions. Such higher-dimensional theories are believed
to provide a good chance for the solution of several of the most crucial questions and
problems in four-dimensional unified field theories. This enhanced role of the geometry
of multidimensional spaces—and hence also that of spinor structures and that of ‘pure’
spinors in higher dimensions—in fundamental theoretical physics; exploiting, in particular,
the geometrical properties previously developed by Cartan and others [5], also see [6] and
references contained therein.

Most discussions of Planck-scale physics work, however, within an underlying classical
geometry. This may not be an altogether justified assumption. A kind of deeper quantum
geometry [7], from which classical geometry should emerge, may be required, not only at
the Planck scale and quantum cosmology level, but also to provide the correct language
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for resolving the paradoxes in quantum mechanics related to the macroscopic geometry of
measuring apparati and quantum mechanical evolution. Non-commutative geometry based
on quantum groups and braided groups has appeared in the last decade or so as a plausible
mathematical formalism for formulating questions and making predictions about physics
beyond the Planck scale, by providing the possibility of extending the concepts of gauge
theory, curvature, non-Euclidean geometry and their description in terms of fibre bundles
to the situation where coordinates are hon-commuting operators.

Within this program it is expected that a quantum deformation of a Lorentzian manifold,
where functions on spacetime are replaced by some non-commutative algebra, should have
some properties similar to those of the ordinary classical space. Depending on the properties
so chosen, several models for the four-dimensional quantum Minkowski plane and the
corresponding quantum Lorentz [8] and quantum Poind¢@r11] groups acting on them
having been proposed in the literature.

Also, as soon as coordinate algebras are made non-commutative the choice of
various possible differentiable structures appears as a new degree of freedom. These
possible quantum differential calculi are determined by the selection of the intertwiners
in the quantum algebras, and offer various natural scenarios for constructing fibre bundle
formulations of gauge theories over quantum spaces where symmetry breaking could be
achieved by quantum deforming the classical one.

The main objective of this paper is to consider the possibility of a combined need for
higher-dimensional spaceg ¢ 4) and their quantum deformations for the description of
physics at and below the Planck length, with quantum spinors and their associated quantum
spin-symmetry groups playing an important role in the ensuing quantum geometry. Under
such circumstances a theory for constructing quantum spinor algebras and the spin quantum
groups related to (pseudo)-Euclidean spaces withlithensions, withh € Z*, and metrics
with arbitrary signatures, becomes important. Although pure twisted and the quantum group
Spin, (4) has been previously treated in the literature (cf the works cited in [8] and [9-11]),
this is not so with higher-dimensional quantum spin groups. It is desirable, in addition,
to have an axiomatic formulation of a deformed spinor theory and quantum spin groups
which preserves Cartan’s geometrical approach as much as possible and, at the same time,
allows one to investigate the implications of different possible choices of intertwiners and
differential calculi, as well as deformations of some of the axioms. For this purpose, and
since spinors are intimately related to Clifford algebras, we have chosen to use as a starting
point for our discussion the theory of quantum Clifford algebras which we have previously
developed [12]. We have concentrated our attention here on involutive intertwiners (better
known as pure twists) for two reasons: first, because calculations, which for higher-
dimensional spaces become much more complicated, remain still tractable for involutive
braids and serve to illustrate the main features of our formalism; second, the resulting
*-compatible differential calculus for the coordinates—of the subjacent (pseudo)-Euclidean
spaces—allows for the usual interpretation of differentials as shifts of coordinates, and left
and right actions of derivations are, in this case, two representations of the same abstract
operator. Thus we avoid the problems of interpretation associated with the nonlinear and
rather cumbersome derivation operators that occur when considering, for example, Hecke
braidings [11]. It should be clear, however, from the generality of our theory of quantum
Clifford algebras that our constructions can be readily extended to more complicated types
of intertwiners. We discuss such a procedure at the end of the paper.

Another feature of our analysis is that it serves to establish the important general
commutation behaviour of the entries in the quantum block matrices for, Gpin We
show that the entries in each block commute with themselves only for the:cask while
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semi-spinors of a given type commute among themselves only fod, they commute with
those of the other type for = 6 and are no longer commutative in either casenfor 8.

Finally note that our formalism is also relevant to the study of the theory of deformed
twistors. This follows from the fact that for = 6, taking the relevant orthogonal group to
be SO (4, 2), the semi-spinors are the univalent four-dimensional twistors and dual twistors,
while for n = 8 the relevant groups to twistor theory &€ (8, C) and SO (4, 4).

In order to make the paper as self-contained as possible, we have structured it as
follows. In section 2 we construct a quantum Clifford algebra and a compattieicture.

By requiring that the fundamental property of spinor transformations be preserved in the
guantum case, a non-commutative algebra is induced for the ‘coordinates’ of the underlying
pseudo-Euclidean spaces. Taking the generators of this algebra as a comodule, linear twisted
group matrices and their orthogonal subgroups withcempatible structure are obtained.

As a separate part of section 2 we include a general construction of quantum analogues of
linear (and orthogonal) groups, starting from appropriate braid operators admitting abstract
‘volume elements’. Conceptually, we shall follow the expositions in [13]. The innovative
part of this subsection is in the systematical use of bicovariant bimodules [14], so that all
braidings in the formalism become the braidings intrinsically associated to the appropriate
bicovariant bimodules. As we shall see, this technique allows us to derive all basic properties
and relations involving quantum determinants in a simple and elegant way and help us to
extend our formalism to more general braids.

In section 3 we develop a pure twisted deformation of Cartan’s spinor algebra and the
corresponding quantum Spite) groups (forn even), both with a compatiblé-structure
appropriate to a given signature of the pseudo-Euclidean space metric.

Section 4 is devoted to outline an approach to extend our formalism to the case of more
general braids.

Finally, in the appendix the general theory for quantum S@in groups, given
in section 3, is applied to the specific cases of involutive twisted braids to quantum
Spin, (4 — h, h) Spin, (6 — h, h), Spin, (8 — h, h), and the morphism of these quantum
spin group matrices to the respective quantum orthogonal matrices is explicitly given. We
also provide the explicit relations which result between the deformation parameters of the
involutive braid matrices associated with the Clifford algebras and those occurring in the
spin group matricegs

2. GL,(2v— h, h) groups

In [12] we presented a theory of quantum Clifford algebras, based on a quantum
generalization of Cartan’s theory of spinors. For even-dimensional spaces (the generalization
to odd-dimensional spaces can be readily performed) the construction starts by considering
the two isotropic subspacésandV’ (dim(V) = dim(V’) = v) into which a 2-dimensional
Euclidean or pseudo-Euclidean spdéedecomposes, i.eW = V & V', where, because
of the isotropy,V’ can be envisaged as the dual Yo The subspace¥, V' and C
with the usual tensor products generate a braided monoidal category, where the braiding
o:V®V —>VQYV satisfies the Hecke conditiai? = (1 — u?o + u?l.

A standard representation of such an operator (coming from quastuitn) groups
[16]) is given byo(e; ® €j) = ule; ®¢) for i < j, while o(e; ® ¢;) = ¢; ® ¢; and
o(e; ®ej) = ule; @e;) + (1— ud)(e; x ej) fori > j. Here{e;}!_; are basis elements of.

1 Throughout the text we shall be using indiscriminatingly the terms involutive and pure twists [15] to mean the
same type of braidings.
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The generator#i (¢;) of the quantum Clifford algebr&i(V, o) satisfy the relations

1
HieHle) + > ()i H(ex)H(er) =0 (1)
k,l

whereo (¢; ® ej) = Zk’l(o)ijklek R e.

Note, however, that these same relations can be obtained by considering the involutive
braid operator fixed by (¢; ® ¢;) = ,u‘l(e_,- ®e) fori < j,andt(e; ® ¢) = ¢; R e;.

To derive the remainder of the Clifford algebra we use the right module structure in
V andV’, defined in [12], as well as the commutative pentagonal diagrams expressing the
compatibility between the braidings extended frén® V to the space¥ @ V', V'® V and
V'’ ® V', and the contraction map betwe&h and V. As explained in [12], such diagrams
uniquely fix the corresponding extensions.

Let us denote by the extended involutive braiding acting &vi®@ W, obtained by the
above-mentioned procedure, so that

plef®e) =ple;®e)  ple@e)=pn(€@e)  i<]
ple;®e) =e e ple;®e;) =e; ®e; 2
ple®e)) =p e, ®e)  plej®@e) =ple;@e)  i>j

We now introduce a consistent anti-multiplicatitestructure on our Clifford algebra, by
requiring thatp satisfy the sufficiency condition

(*xQ@x)mp = p(x @ *)1 (3)

wherer is the standard permutation operator.

For this purpose we first generalize the algebra to a multiparametric one by means of the
changeu — p;; in the braid relations; such that, fos£ j we haveu,; = uﬁl = expioy),
when 1< k < (v —h —1)(v — h)/2 andi, j < v —h, and such thaf;; = ;" = expliie)
with 1 < k < h—1fori,j < v—h+1, and finallyw;; = Mj‘il = u; € R, where
1<k<v—hwthi<v—h,j>v—h+21lorj<v—h,i>v—h+1 Here the
index i denotes the number of negative terms in the signature of the metric of the classical
pseudo-Euclidean space, associated with the isotropic basis}. If we now define

e.

* = bie; (e?)*:bflei i=1...,v—nh

el = expiy;)e; (e))* = exp(—ig;)e; i=v—h+1...,v 4)
whereb;, ¢; € R, then it is easy to show that the generalized multiparametric braid relations
are preserved. The choice (4) is clearly motivated by the observation that in the classical

.. . ii—1 . ij—>1 . . .
limit, lim ¢; s 0, limbp; S 1, these relations reduce to the usual complex conjugation
relations for the isotropic bases.

Furthermore, defining th&-action on the generators of the Clifford algebra by means
of

(H(e)* = (=D)"H(e}) (H(E))* = (=D"H(e) (5)

we also obtain in the classical limit(; — 1) the appropriate expression for the Hermitian
adjoint operation on these generators. Thi&ructure is compatible witll(p, W).

Let us now define a ‘real’ vector oW by the requirement* = x*; it then follows
from (4) that the components must satisfy

(x')* = b7y (") = bix! i=1...,v=nh

(x')* = exp(—ig)x’ (x")* = explig;)x" i=v—h+1...,v. (6)
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We can now use our quantum Clifford algebra to impose a non-commutative algebra with a
consistent‘-structure on the underlying quantum pseudo-Euclidean space, by requiring that
the fundamental property of spinor transformations be preserved in the quantum case, i.e.

H(x)H(x) = (z,x)E. ©)

where (z, ) = x*x1 + - -- + x"x" is the fundamental quadric.
Under this assumption, and using the linearityfbfx), it immediately follows that
-1 i

x'x) =mtx' @ x/) = pijx'x’ X'x)=mr(x" @ x’)) = I x!x"

._.l
1
wherem stands for the multiplication map. Note that, x) is central to this algebra, so it
provides a sensible definition of length. Also note that (8) is consistent witk-¢reicture
defined above. The involutive braid operator corresponding to the algebra (8) is obtained

from p by making the exchangg;; < ,ui;l. From this it is evident that this new braid

operator, which we denote by, will also satisfy the braid consistency relation. Moreover,
defining

x'x7 =mr(x' @ x'7) = utxx! KX =mi " @ x) = ppx k" (8)

R:=nR ©)

it can be shown thatR is diagonal, and that it satisfies the quantum Yang—Baxter
equation. We denote hyl the non-commutative algebra of polynomials in th&ariables
xtoxv,x oo, X7, and by A, the quotient algebral/Z;, whereZ; is the two-sided
ideal in A generated byl — R)(x ® x) = 0. ThusA; is the twisted algebra of functions
on the deformed-dimensional vector space associated with the matrix

The corresponding pure twisted general linear group, associated to the Raoliows
readily from giving Ay a comodule structure and applying the general formalism for
guantum groups (see e.g. [13]). We thus obtain for the bialg@hragenerated by the
entries of the matrixg, the commutation relations

Maﬁtﬂrta(r = M(rrtaotﬁt (10)
with
i Wi
; iy
o = (14 1), D
Hij Mij

Now imposing our*-structure on the comodule actigh: A; — 7z ® A; by the
requirement thaé is Hermitian, it is easy to compute the correspondirgjructure on the
algebraA. In general, the consistency between the product and-gteucture is ensured
by the construction.

Let us now assume that the algelfais ‘enlarged’, by introducing the inverse of the
corresponding quantum determinant (an alternative general and what we believe is a novel
approach to this procedure is presented in detail in the following subsection). We shall
denote this enlarged algebra By.

Then it is possible to introduce the antipode map: 7z — 7z, by requiring
amtimultiplicativity, and

m(k @id)g(t%g) = m(id @ k) (t%p) = §%. (12)

The bialgebral; becomes a deformed Hopf algebra with a compatikééructure.
The components of the fundamen®imatrix associated with our quantum group are
given by

R 0 = 11pad5 8" (13)



6456 A Criscuolo et al

Comparing these expressions with those obtained by Schirrmacher [17] in his treatment of
multiparametric deformations a¥f L (n), it is clear that the matrix pseudo-group involved

in our theory is a particular case @fLx ,, (n — h, h), with X = 1 and the parameters
related by (11). This result, of course, comes without surprise since our intertwiners were
taken to be involutive to start with. Note, however, that the basis for our construction is
completely different, since it hinges on the idea of utilizing our previously developed theory
for a quantum Clifford algebra and adopting the ansatz (7) to induce the comodule structure
Aj for the ‘coordinates’. Furthermore, as shown in the following subsection together with
section 4, our previous analysis can be readily extended to the general construction of
guantum analogues of linear (and orthogonal) groups, starting from general braid operators
admitting abstract ‘volume elements’.

2.1. General quantum determinants and associated quantum groups

In this subsection we shall abstract our previous analysis, and present a general construction
of quantum analogues of linear (and orthogonal) groups, starting from the appropriate braid
operators. We shall consider general (not necessarily involutive braidings) admitting abstract
‘volume elements’. Conceptually, we follow [13], however in contrast to these papers we
shall systematically use here the formalism of bicovariant bimodules [14], this allows us to
derive the properties of the associated quantum determinants in a concise and elegant way.

In accordance with the notation introduced in the text and in [12], Aebe the
vector space generated by the coordinates We shall denote byR : Z®? — Z®? the
canonical braid operator (defining relations in the algebra of coordinates). Let us assume
that R : Z®2 — Z®2 is such that there exisis € N and an element, € Z*"\{0} such
that f A w, = 0 for eachf € Z*.

It is important to observe that # d = 2v = dim(Z) in general (although in various
interesting special cases the two numbers will coincide).

We shall also assume that the pairing betw&eand Z* is defined by

(z® f) =(Rz® [)) (14)

where the symboR will be used for all the braidings appearing in the braided monoidal
category generated b, Z* and the initial braiding. Finally, let us assume that this pairing
is non-degenerate

Proposition 2.1. Under the above assumptions we have the following symmetry property:
dim(Z"%) = dim(z"*=0). (15)
In particular, di{Z"*) = 1 andZ"* = {0} for k > n.

Proof. Let us consider the quantum Clifford algelf&(Y) associated t&’ = Z ¢ Z* and
the corresponding braiding. Furthermore, let us assume that" is embedded inZz*®
with the help of the inverse braiding=—! : Z*®? — z*®2_ The formulae

HHY =f Ay H@Y =¥

where f € Z* andz € Z, define a representatioH of CI(Y) in Z**. Observing that
H(Z*)w, = {0} and applying the results from [12], it follows that there exists (the unique)
injection p : Z* — Z*" intertwinning the corresponding representations and satisfying
p(1) = w,. In particular, p(Z**) < Z*~* and hence difZ"*) < dim(Z*""~*) =
dim(Z""~*). Hencep is bijective. O
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Let w be the corresponding volume element4ri”. Let 7 be the matrix bialgebra
generated by abstract matrix elemerfts and the relations coming from the requirement
that R : Z®2 — Z®2 intertwinesT € M, (7z).

By construction we have a natural coactibn Z — 7z ® Z. This coaction map admits
the unique unital multiplicative extensidfy* : Z* — 7x ® Z”. In particular, we have

Tw)=AQw (16)

where A € 7 is an element which will be called the quantum determinant. From the
comodule property we find

P(A)=A®A e(A) =1.
Let us assume tha” is embedded irZ®, via the braidingR. We can write

o= Zs“ ® 7% a7

a

wheres® ¢ Z"1,
Lemma 2.2. The elements® form a basis inz""1.

Proof. This is a consequence of considerations contained in the previous proof. (J

Hence, we can writd " (s%) = Zﬁ 5 ®sP, wherer®; satisfy¢ (7%4) = Zy 1, Q1"
ande(t_"‘,g) = 8a/3.
Let us consider a scalar matrigiven by

2P As? = 5P, (18)
Lemma 2.3. The matrixS is invertible.

Proof. More generally, let us consider a pairing [ Z"* @ Z""~* — C given by
[Pn]w =3 An.

It follows from the proof of proposition 2.1 that this pairing is non-degenerate. [
Now we can derive two algebraic relations between matrixemd 7.

Proposition 2.4. We have

AE =(T)"T (19)
AE =TS(T) s 1. (20)
Proof. This is a direct consequence of (16), (17) and (18). O

Let 7 be the algebra obtained by adding7p the formal inverse ofA. It is easy to
see thatp ande admit natural extensions t&.
Proposition 2.5. (i) The matrix T is invertible in M;(7z) and
T =AYy =sT) " sat (21)

(i) There exists the antipode map: Tz — 7z, and in particulaw (7) = 71
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Proof. The statement (i) is a consequence of the previous proposition. The second
statement follows from the observation that the relations defifingre compatible with
inverting A andT. |

The constructed quantum group <> 73 is the analogue of the general linear group.
Note that such a construction allows the interpretation in terms of bicovariant bimodules.
The formula

RZ*®H) =) (tF, 0z ®2" (22)
Y

consistently and uniquely determines a I&ft-module structure orZ so that the triple
(Z, o, T) determines a bicovariant bimoduleover 7. Similarly, the formulaeol = e(a)1
anda o (91) = (@® 0 9)(@? o n) determine leftZz-module structures od”®. The space
Z is interpretable as the right-invariant partlof< Z ® Tz, andT is the restriction orZ
of the corresponding left action mdp: I' — Tz Q@ I'.

In particular,

T ao®) = Za(g)ck/((a(l)) ® (@@ o) (23)
k

where) ", ¢ ® % = T"(¥). Furthermore, we have
aow=wka) (24)

wherex : Tz — C is a (non-trivial) linear multiplicative functional. This fact can be used
to derive a simple commutation relation betwegrand elements of;. Let D : T — Ty
be an automorphism given by

D = (id ® »)ad (25)
where ad :7T; — 7z ® T is the corresponding adjoint action, explicitly given by
ada) = a® @ k(aV)a®.

Lemma 2.6. We have
Aa = D7 Ya)A (26)

for eacha € 7.

Proof. A direct computation gives
T aow)=A®wr(a) =aPAc@®) @ wr(a?®).
In other wordsAx(a) = a® Ak (a®)1(a?). Equivalently, (26) holds. O

To conclude this subsection, let us analyse the quantum determiinafrihe orthogonal
subgroups of;. Let us assume that the spaces endowed with a (not necessarily positive)
scalar product (,) such thab(w) # 0. Here we have assumed that (,) is naturally extended
to Z%.

Let C be the Hopf algebra obtained froff, by requiring the invariance of (,) under
T®2, This C represents the corresponding orthogonal group. We shall denote by the same
symbols the projected entities.

Lemma 2.7. We have
A% =1 (27)
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Proof. Applying the invariance condition we fintl, ) ® 1 = (w, w) ® A?, and hence

(27) holds. O
Thus, we can write
A=P,— P Pr=(1+A)/2
where
P2=1P_ PZ=P, P_P,=P. P =0

in the framework ofC. Let J C C be the set consisting of elemeritsatisfying
Ab=b<& P b=0.

The setJ is a co-ideal and a two-sided ideal h Moreover,«(J) C J, and hence it
is possible to factorize through. Geometrically, this corresponds to passing to the normal
subgroup consisting of unimodular matrices.

2.2. Q,(2v — h, h) groups

We shall now require that the fundamental quadsica), which was previously shown to
be central to the algebra of ‘coordinates’, should be invariant under the co-actibimus
we must have

- (0 I, (0 I,
T(zv 0>T_(IV o) (28)
where], is the identity matrix inv-dimensions.
Moreover, making use of the bicovariant bimodule interpretation (22) explained in

subsection 2.1 and applying it to our specific involutive braiding determined by equations (8),
we have

]%(xi ®xj) = /,Lijxj ®xi = Z([ja Oxi) QR x* = l‘ja oxi = M,-ijaxi (29)
o
R(x/i ®xj) _ Mi;lxj Qx' = Z(tja Ox/i) Q1% = t-fu, ox = u,-;ltsjax" (30)
o
Ié( i 5N =1 ) i i i @ ' i ls 31
x'@xY)=px ®x—Z(taox)®x =t gox' =p; 8 x (31)
o
Rx"@x"y = M,-jx'j Qx" = Z(tj/a ox)@x% =t/ yox" = Mij(;aj’.x/i. (32)
o
Consequently,

2v

tPoow= Y (P ox") A A(t%g 0 X A (1% 0X") Ao A (1% 0 x™)
o1...002y

= ws?,. (33)
This in turn implies that.(T) = I. Furthermore, sincé is a homomorphism of algebras,
M (THAMT) =1, i.e. x(T)) = AM(T)™t = A(T) = I. Hence

D) = A(tP DAt 5) ® (A @ id)ad(t’,) = t7,,. (34)
It then follows from lemma 2.6 that (28) implies that the determinant of our quantum
matrices is central, while lemma 2.7 shows that this determinastsubject to the additional
restrictionA? = 1.
Finally, it also follows from (28) that

0O ILLYx(0 1,
=2 5)7(2 ) -
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3. Twisted spin groups associated to2-(Pseudo)-Euclidean spaces

In the preceding section we have developed-structure compatible algebra for the
twisted groups of proper and improper rotations in (pseudo)-Euclidean spaces of arbitrary
even dimensions and arbitrary signatures of the metric. Our formalism resulted from
first considering a quantum Clifford algebra based on an involutive braid operator. By
requiring that the fundamental property of spinor transformations—given by equation (7),
be preserved, we obtained an algebta for the coordinatesof the underlying (pseudo)-
Euclidean spaces. We then constructed a twisted matrix alggbfaom the comodule
structure of A;. By further restricting the resulting pseudo-group to leave invariant the
fundamental quadri¢z, x), we arrived at our desired results.

The program we propose to develop in this section beings also with the multiparametric
guantum Clifford algebr&(W, p), together with the preservation of the property (7) for the
spinor transformations and the resulting deformed algebra (8) for the coordinates. However,
instead of considering the quantum matrix group which co-acts on the quantum plane
generated by these coordinates, we shall construct the quantum groups associated directly to
spinor transformations, i.e. the quantum $g#v) groups. We consider it important at this
point to stress the fact that even though S# groups have been considered previously in
the literature [9-11], and even though our resultsifer 2 agree with those of some of the
referred authors, our formalism, based on quantum Clifford algebras and quantum spinor
spaces, allows for a general consideration of quantum spin groups for any dimensions and
signatures of the underlying (pseudo)-Euclidean spaces. It is also important to mention that
our constructions are applicable to the general (non-involutive) braid operators. However,
some constructions and concrete computations will be worked out in the context of the
braidings given byp.

To begin, recall [1] that the quantum Clifford product is uniquely determined by the
relations

Hj_'].:e‘i H,‘ c€ =€ /\e_,~ H[, € =Le’{€j 261/(61) =8,‘j (36)

wheref{e;} is the isotropic basis iV, introduced in section Z¢!} is the reciprocal basis in
V', andH; = H(e;), H = H(e;). We can then define a quantum spinor by

?)-' = i Z Skl“'k” 24 Hk1 - Hk,, -1 (37)

p=0ki<--<k,

where the 2 componentsX-* are the generators of a non-commutative free algéhra
and the symbo[kﬁ,«kp is to be interpreted as no sum in the case: 0, so&k-% = g0
whenp = 0.

Note that in the classical limik;; — 1, the above expression reduced to the usual
definition of a spinor as an element in the graded Grassmann algebra of the basis vectors
in the corresponding (pseudo)-Euclidean space to which the spinor is associated.

We can introduce a bilinear inner product on the quantum spinor spadas first
defining the involutive and anti-multiplicative T-transpose operatiprg S — £7 € 5/,
which maps linearly spinors ifi to spinors in the dual spac®. This operation is uniquely
defined by its action on the generators of the Clifford algebra:

1"=1 H' = H/ (H;H;)" = H/H|. (38)

Hence the T-transpose operation maps Clifford product from the left to Clifford product
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action from the right, and

=" > threl. H ... Hj. (39)
p=0ki<--<k,
Note that by virtue of (36) and (38) the elemeft#y, ... H;, - nT=1. H,gp ... HJ } form
a basis reciprocal t¢(Hy, ... Hy, - 1}, k1 < --- < k,, which allows us to define a scalar
product for homogeneous spinors pfdegree, given by

[EP)T, g ] = Y byt U H .. H, Hy ... H 1]
ky<---<k,

Y Evbpleh QU H] L H H . Hy, -1

P

ky<---<k,

Z %.kl...k,, nkl---kp Q1. (40)

ky<---<kp

Requiring that the scalar product of any two spinors respects gradation, we thus have

v

[ST’ n] — Z Z Ekl...k,,nkl...kp. (41)

p=0ki<---<k,

Also, in analogy to the classical Cartan spinor theory, we can define a fundamental spinor
bilinear by means of

€85 =[¢".C-&] (42)
Here C is a spinor metric operator given by
C = - (_1)(v—p)(V—P+1)/2
p=0

X Z (=D ar @) 2(p (W) Hrey - - - Hu(py(Hr(pi1) - - - Hr) '

TES,
r(D)<---<m(p)
m(p+)<--<m(v)

(43)
with [(sr) = length of the permutatiomr and, for the case of pure twists,
1/2
ar)..7(p) = [z @rw) - - - e (p4D) - - - Bl (pym(v) - - - R (p+1) ] /
Ar(ty.x) = a0 =1 (44)

where the symbol) denotes pair ordering of indices so that the first one is lower than the
second.
It is easy to verify that with (43)

CT — (_l)\)(v+l)/2C (45)
and
& 6)" = (=12 §) (46)

which is the quantum analogue of polarity of the spinor bilinear (42).
Making use of (43) it can be readily shown that (42) may be written as

€& =) (~DePertbz N (1) gy TP PET DT (47)
p=0

7(1)<---<m(p)
m(p+D<--<m(v)
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Now, taking as a basis the' 2lements of the quantum Clifford algebiB H, ... Hy, k1 <
kp <--- <k,,p=12...,v} ordered in such a way that those with an even number of
indices and in an increasing degree sequence come first, followed by those elements with
an odd number of indices also in an increasing degree sequence, we can write a spinor as
a column vector where the first'2 entries correspond to a semi-spinor of the first type
(which we shall denote by), while the last 2~ entries correspond to a semi-spinor of the
second type (which we shall denote f#y, in Cartan’s terminology.

It is evident from (47) that the fundamental spinor bilinear involves products of
components of semi-spinors of the same type & even while ifv = odd the products
are of semi-spinors of the two different types.

In the classical Cartan spinor theory, the action of the opertar) = > ) (x'H; +
x""H!) on spinors, withz a unit vector, corresponds to a reflection in the hyperplane
perpendicular tar. A proper rotation on vectors then corresponds to an even product of
Clifford operators acting on spinor space. Thus, relative to the above-described basis, the
spin group matrice® are block diagonal.

Taking the entries of such a matrix as the generators of the free al@tlofanon-
commutative polynomials, and requiring thitsatisfies the connection axiom

¢a-b)=¢a)-pb) e(a-b) =¢€(a)-€b) Ya,b € B (48)

equipsB with a bialgebra structure.

Furthermore, since our quantum Clifford algebra involves an involutive multiparametric
braid, it is natural to expect such a braiding f&ir Imposing the requirement that gét= 1
we have, making use of the results of Schirrmacher [17], that

b bty = TR ey (49)
4o
where, because of the block-diagonal structure of the m&rithe indicesy, 8, A, 0 € Z

take values ranging from 1 to’2' or from 21 +1 to 2, and
Gor. = G if & <A (50)

We can then construct a quantum matrix algebra by considering the quotient algebra
Br = B/Iz by the two-sided ideal; generated by the braid type relatio®B ® I)
I®B)=(UQ®B)(B®I)R.

Moreover, from the above-constructed involutive braid operator fol3tmeatrices, we
can obtain the associated quotient algefga= S/I;, wherel; is the two-sided ideal i
generated byl — R)(¢ ® £) = 0 and, as beforeR = 7 R. Since(1— R)(§(§) ®8(£)) =0,

Sy acquires a comodule structure with a co-action map

5:Sé—>BR®81§ (51)
defined by
2v
5E) =) bpe&l. (52)
p=1

To obtain the different quantum spin groups, we need to impose additional constralBgs on
which, as suggested by the classical spinor theory, should be determined by the fundamental
spinor bilinear (42). Thus we shall require that

(i) the spinor bilinear £, &) be central relative to the algeb&;

(ii) the quantum determinant of each block in the matfxshould be central and
unimodular;
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(i) the spinor bilinear should be invariant under the coaction hapn other words
8:(,8) > 1®(&,&). This in turn implies
b6 5 Cop = Cio (53)
where C,s are the matrix elements of the spinor metric in terms of compound indices
determined by (44), (47) and the specific ordering described previously. Note from (53)
that since the matrix is invertible,x(B) = C~'BC.
For the final axiom we need to consider the analogue of the classical homomorphism

property, relating spin groups and (pseudo)-Euclidean groups. For this purpose let us first
define the ‘spacetime coordinates’ as

Xo = (&, Hy) = ETCH,E. (54)

The indices of these ‘coordinates’ are lowered and raised with the metric of the
fundamental quadri¢z, ). Hence we can rewrite (54) as

x*=&"CH]¢. (55)
Co-acting withBg on (55) according to (52) we have

81 &% — b7, Copb? ((H])p, ® EMEX (56)
and making use of (53) we obtain

8% — Cio(k(B)G(Hy)pyb” \ ® E*E". (57)

Thus,

(iv) assume that the vector space of generaf@ysis invariant under the constructed
adjoint actions.

Axiom (iv) allows us to define the quantum matrix elemerits by

k(B)H, B =14 H; (58)
S0
§1EY > 1" QEP = 14Cy,(HY) py ® £
=1 ® (£, HJ§). (59)

The geometrical meaning of (58) is that after restricting the adjoint action on the space
of generatorsH,, we should obtain the standard action of the quantum orthogonal group
(as in the classical theory). It is worth mentioning that in lower dimensions such invariance
holds automatically.

These axioms are sufficient to determine univocally and consistently the quantum spinor
algebra and quantum spin groups since they give the quantum parameters in (49) in terms
of the u's of our Clifford algebra. However, they may not all be necessary. In fact, note
in particular that the centrality of the quadratic forin §) can bederived from the other
conditions, so it is not actually an axiom but a consequence of the general property that
every left-invariant element in a braided-symmetric algebra, built over the right-invariant
part of an arbitrary bicovariant bimodule, is automatically central. In more detail, using
conditions (ii)—(iv) and applying the general methods for constructing Hopf algebras via
intertwiner-type relations, we end up with a Hopf algelffabased on the matriB8. The
later describes the co-actidnon the spinor vector spacg

SEH =) bie&.
J

Furthermore, it can be shown that the sp&idg equipped with a natural left-module structure
o over 3, so thatS is interpretable as a right-invariant part of a bicovariant bimodiile
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Now, it is sufficient to observe that the braid operator generating the alggbra
is precisely the braiding intrinsically associated @ In other words, the braiding is
EQE > Y, (bl o&)) ® &, and the property (i) easily follows.

We have included (i) in the list of conditions because of its importance in practical
calculations (particularly for higher-dimensional spaces).

Finally, let us observe that the following interesting property holds. If we particularize
the considerations to the involutive braidings we considered, then it turns out that
contragradient ‘coordinates’, expressed in terms of (55), satisfy the commutation relations
(8) with p;; — M,}l- Furthermore, a more detailed analysis shows that it is not possible
to avoid consistently this ‘2-periodicity’. However, as we shall see, our construction still
gives the appropriate quantum orthogonal group as a homomorphic image of the quantum
spin group. It is also worth noticing that a similar phenomena appears in our general theory
of quantum Clifford algebras [12], where Clifford algebras associated to coordinates and
derivatives are related by the same kind of transformation of the deformation parameters.

To further clarify the above remarks, note that multiplying (58) by itself from the right
and from the left, adding the results, and making use of the Clifford algéhya, W) with
Utap Qiven by (11), we can write

K(BYHJH + pgg HYHDB = ) @%it? s — it i1 H] Hj
ij

—1 -1 -1
) ity — gt O HiH Y i — gt i) HYH
i,j i,j

+ Z(tai/[ﬂj — /L;;'/,Li;ltﬁj[air)Hi[{j/. (60)
i,j

Furthermore, usingi(p, W), the left-hand side of (60) becomes LHS(6%,8%,+5%,6%))E.
It clearly follows then that the“s on the RHS must satisfy (10) with the replacement
Hap = Iy, together with

SOt 11 = 54,88 + 58P, (61)

This last result is equivalent to (28), so invariance of the fundamental spinor bilinear implies
invariance of the quadri¢z, ). Thus we have established the homomorphism of our
quantum spin groups with th&0,, groups.

In order to be able to account for the different possible signatures of the underlying
(pseudo)-Euclidean spaces, we need to introduce a compétittacture for the algebras
S; and Bg. Such a*-structure can be readily obtained by recalling thstructure that
we derived for the ‘coordinates’ in the preceding section (cf equation (6)), making use of
(55) which relates ‘coordinates’ to spinor components, and requiring(8tiat--+#))* =
8((%-11 ..... t,,)*)_

Note that our construction involves expressing univocally thet@” — 1) parameters
gep In the quantum spin matrices in terms of Wg2)v(v — 1) parameters of the Clifford
algebra. Except for the case= 2, this is a highly overdetermined and non-trivial problem,
which is solved by applying the axioms (i)—(iv) above. We have concentrated in the
appendix the results for = 2, both for the Euclidean and Lorentzian metrics, as well as
for the cases = 3, 4 (also for Euclidean and Lorentzian metrics) which further illustrates
our construction and, as pointed out in the introduction, may be the most relevant to the
deformation of physics theories in higher dimensions and deformed twistor theory.

Due to the relative complexity involved in solving for the parameters in the quantum
spin matrices in terms of those in the original Clifford algebra, in particular for the cases
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of higher-dimensional spaces, it is worthwhile to consider the possibility of alternative
approaches which might lead to a simplification of our calculations and constructions. One
such possible approach originates from the works of Drinfel’d and Reshetikhin [15] (cf
also the related discussion in [18]) which allows one to obtain multiparametric quantum
groups by ‘twisting’ arbitraryy-groups with a diagonal matrik = diag (f11, f12, - - -, fun)s
subject to the conditiory;; f;; = 1. The geometrical meaning of these quantum group
twists has been investigated by Chaichian and Demichev [10] who showed that twists may
be understood ag-deformed coordinate transformations by means of an auxiliary algebra
of ¢g-deformedn-beins. Thus, in particular, we could consider starting our formalism with
ordinary commutative objects and classical groups, and try to arrive at our final constructions
and pure twisted groups via this technique.

Specifically, by virtue of the fact that (7) is frame independent, a quantum transformation
of coordinates using thg-beins implies immediately a deformation of the Clifford algebra to
Cl(p, W). We could then indeed start with commuting coordinates and the classical Clifford
algebra, and using Cartan’s formalism in such a frame-independent fashion attempt to derive
the quantum spin groups in an alternative and perhaps simpler manner. In fact, we have
essentially followed such a construction in [19], using the well known fact that the elements
of the spin group are the even elements of the Clifford algebra. Thus proper rotations are
given by operators of the fornB = H(x)H (y) and their products. Clearl may be
calculated in the frames of commuting coordinates and the classical Clifford algebra, and
perform the deformations afterwards by means ofjtHeeins, to get the associated deformed
matrix. Note, however, that these rotation operators co-act on spinors and not on the vector
space of the generators of the algebra of the coordinates. Consequently, the corresponding
twisted matrices are expressed in terms of the spinor basis generated by the Clifford algebra
(cf equation (37)), with the ordering described in the paragraph following equation (47).
This means, in particular, that the analysis in [10] cannot be used directly to infer that these
twisted spin group matrices satisfy the axioms of deformed Hopf algebras and that they can
be associated to a quantum group. As it turned out, the entries in the resBiltinatrix
have commutation relations determined by the algebra of the coordinates (8), extended to
apply to coordinates of different vectors. This algebraaloes not satisfy the usual axiom
for the coproduct and, therefore, does not lead to a quantum group. We did show in fact
in [19] that, working in the context of braided categories and specifically using the same
braid of the coordinates for the braid of the coproduct, one could interpret the twisted
matrices as being actually elements of a braided spin group and not a quantum group. For
further details on this approach, we refer the reader to the above-cited paper. As a final
remark on this issue, we note that although we could still applytbein technique to the
classical block diagonal matrices of the spin group to get an algebra for the corresponding
twisted quantum group, such a procedure would not be of much help in simplifying the
calculations needed to relate the parameters of the resulting twisted group with those of the
Clifford algebra. To obtain this relation it is essential to use axioms (iii) and (iv) of our
construction, which cannot be derived by #bein technique.

On the other hand, the use of the technique of Drinfel'd and Reshetikhin [15], would be
important for the construction of quantum spin groups from non-involutive Clifford algebra
braids, along the lines proposed in the next section.

4. Quantum spin groups from non-involutive braids

As mentioned in the introduction, involutive braids although simple, are not trivial. From
a mathematical point of view very interesting purely quantum phenomena already appear
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at the level of diagonaR-matrices, as for example possible deviations, from its classical
counterpart, in the Poinoarseries of the braided exterior algebra. On the other hand, it is
possible that such milder deformations might turn out to be physically less interesting.

This, however, does not pose a major limitation to our approach since, as we also have
mentioned previously, the essential concepts of our formalism should apply equally well
to more general braidings. Thus, in order to complete the discussion, we shall concentrate
in this last section in providing an outline of the steps that would have to be followed
to extend our procedure to more general braidings associated with our general theory of
guantum Clifford algebras. (The intermediate steps are very much suggested by following
the presentation in sections 2 and 3.) For this purpose, we recall first that the braiding in
our quantum Clifford algebra [12] is given by the block matrix

w2 0 0 0

_ 0 0 o1 0

P=1l o o 0 0O
0 0 0 u?o

In the above matrix, the operater has been extended from ® V to the braiding on
the direct sumW = V @ V’. This extension is fixed uniquely and consistently by requiring
the functoriality of the corresponding contraction maps, as explained in the above referred
paper. The blocks of the extension are denoted by the same symlaohotation which
should not lead to any confusion as ths are uniquely fixed by specifying the domains.
This construction implies immediately that the operaiasatisfies the braid equation.

Another way to verify that (62) satisfies the braid equation is by directly considering the
action of both sides of that expression on all possible triple tensor products of the subspaces
V and V', with p given by (62), and then applying linearity. Furthermore, using (7) again
as an ansatz we arrive at tfematrix

(62)

%1 0 0 0
. 0O 0 & 0
R=| o 10 o (63)

0 0 0 pu2?

which, by construction, also satisfies the braid relation. This implies that the universal
matrix R = 7R obeys the Yang—Baxter equation, which guarantees consistency of the
‘RTT’ equations and which, in turn, define a quantah.(n) group.

As a next step we impose the sufficiency condition (3) in order to introduce the concept
of reality as well as a consistentstructure forR and for the Clifford and ‘coordinate’
algebras. In addition, and having in mind higher-dimensional spaces, we make use of the
technique of Drinfel'd and Reshetikhin [15], to obtain a multiparameRit -matrix from
our one-parameteR by ‘twisting’ with a unitary (so as to respect thestructure) matrix
F.

From this stage on we would only have to follow, in principle and with the appropriate
modifications, the steps detailed in sections 2 and 3 to arrive at the different quantum spin
groups. More specifically, we would need to use the lemmas in section 2.1, applied to our
new braidings, to verify that the requirement of invariance under the coactionsnadip
the central fundamental quadrie, x), leads to centrality of the determinantand to the
additional restrictiom? = 1. Finally, we would follow the procedure in section 3 to derive
the commutation relations for the spin matrices, and use the axioms (i)—(iv) to reduce the
number of parameters occurring in these commutation relations, and relate them to the ones
involved in the Clifford algebra. Axiom (iv), in particular, would help to establish as well
the homomorphism with the quantuO (2v) groups.
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The details of the above program are part of an ongoing research program by the authors
and will be presented separately.
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Appendix. Quantum Spin,(2v —h,h),v = 2,3,4

A.1. Quantum Spji(4 — h, h) groups

In this case the spinor metric operator (43) becomes

C = HiHp — /uH Hy + JuHyH] — HyH; (64)
and a quantum spinor, in the ordering described above, is given by

§=¢'+ Y H+ y?Hy + ¢9*HiHy. (65)
Hence the fundamental spinor bilinear has the form

§7Cs = 90" = Juy Y + Pyt — ¢le”. (66)

The non-zero components of the multiparametric braid operator for a fourth-rank unimodular
guantum matrix are

R =diagll, 915 415 914 912. L. a5 » 434 413, 923, 1, 434 14, G24, 34, 1. (67)
From this it follows that the generators &f satisfy the algebra
¢'0% = g9t PP = gayPy?
ot =aqvlet 9N = quy®e’ (68)
$*V? =g’ PP = qaay e’
Now the requirement of centrality of (66) relative &, implies
qr2=qu=1  qu=q3=q; =4q53;. (69)

Using (69), the commutation relations (68) are equivalent to those obtained by Chaichian
and Demichev (cf the first paper cited in [10]). The invariance of (66) under the co-action
map leads to

81 (ETCE) = B%bY; — bLb) @ ¢’ — Ju(bPb%; — bDP) @ Yy

=1® (¢, 8)
i.e.
bhib?, — bLp% =1 b33b%, — b3t =1 (70)
b%1bY — bYb% =0 b%obYy — blb%, =0
b33b%; — b*3b33 =0 b3b%, — b3, = 0. (71)

Clearly (70) and (71) are equivalent to the condition (53), but (70) also implies automatically
unimodularity of the quantum determinant of each block in the magrix
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To determine theg;; in (69) in terms of the.-parameter in the quantum Clifford algebra,
we make use of (55) to obtain

1
wl= ¢21/f1 _ W/fl¢2 2 = ¢21/,2 _ 71/,2(152
\/> \/ﬁ
1
== - uyteh  xP=—p (¢1w1 - wlqsl) - (72
Vi i (72)
Requiring now that (72) satisfy the commutation relations (8), yields
Q1= q3=0q5 =413 = VIt qr2=qza=1 (73)
and using these last relations in (49) defines completely the alghbra

We can next establish the group homomorphism by applying (56) and (59) (or,
equivalently, (58)); we thus get

l‘iL = b22b33 l‘lz = b22b34 IJ:_L/ = —b21b34 l‘lz/ = M_1b21b33

1?1 = b%b% 1%y = b%b*, 2y = —b?1b%, %y = %

Y1 = —blob%s Yy = —blb?y Yy = bl Yy = —u b (74)
1?1 = ubob% 172 = ubb% 1?1y = —ubt1b% 1?3 = b11b%.

It can be readily verified that (74) indeed satisfies the relations (10).

As the final step in the application of our procedure to the case2, we shall derive
the induced*-structure for the signatures associated with the four-dimensional Minkowski
and Euclidean underlying spaces.

Minkowski spacév = 2, h = 1). Here,u € R* and
(xl)* — wl*¢2* _ \/ﬁ(bz*l//l* — _b71(¢lw2 _ ﬁw2¢l)

(XZ)* — 1’[,2>c<¢)2>5< _ \j‘ﬁ¢2*w2* — eXp(—|<,0) <¢2w2 _ \/]-ﬁl/fquz)
1 . 1
(x/Z)* = (I/fl*¢1* _ \/ﬁqbl*wl*) — /’Lequw) (¢l,¢jl _ \/ﬁwl(pl)

from where it follows that
Yy = —Vblexpip/2)¢t % = Vb Lexp—ip/2)y 2. (75)
We now use (75) to derive tHEStructure of the aIgeerR. Recalling the comodule action
requirement(§(¢'))* = 8(¢'*), and (§(¢¥'))* = §(¥'*), it can be shown that
e—“ﬂ
b

It is a straightforward matter to verify that both thetructures (75) and (76) are compatible
with the algebrasS; and Bg, generated by (68) and (69) witlag given by (73).

br* = b bt = —be¥b, bt = — b3 b’5 = b (76)

Euclidean spacév = 2, h = 0). In this caseu is pure imaginary and (8) and (72) imply
by

bV ¢ = Vubibag? (77)

while the comodule action requirement leads to

l/fl* —

b
bt =b% b= bbb =0t b= ;2’)43- (78)
1

Consistency of thig-structure can also be checked immediately.
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A.2. Quantum spin(6 — A&, h) groups
In this case the spinor metric operator (43) becomes
C = HéHz/Hi - ClHlHéHz/ + CszHg/H],_ - C3H3H2/H]/_
—C4H1H2Hé + C5H1H3Hé — 66H2H3HJ/_ + H1H>H3 (79)

wherecy = cg = /12013, €2 = €5 = /l12l23, €3 = ¢4 = J/paspzs. Using this, the
fundamental spinor bilinear has the form

ETCE = ¢My* + ¥t — a1y — et + oy Py®
+esp® Y — c3p®y® — cap” — cadp®yl. (80)
The commutation relations between the spinors are similar to (68). However, in this case,
semi-spinors of the same type do not commute.
The isotropic coordinates given in terms of the spinors are
=yt esd®9? — cap?e® — ety
x% = —yty? — ooy 9% + cap?dt + couy vyt
2=yt 4 uigeed e’ — csus %0t — cappiuss vyt (81)
= ¢lt — 19" + cay?y® — cay Pyt
X% = csp®Pt + paacay Yt — ey — paag'e?
X% = —c4p® — pascov Yt + pascry Vv + paznasd’e’.

The g parameters of deformation of the quantum Spir(b, ) groups are related to
the u deformation parameters of th&0,,(6 — &, k) groups by

q18=¢q27=q3s =qas =1 412 =428 = 417 = q75 = q23q24
-1 1 _ 934 1 -1 23
413 =438 ={q16 = Y4eg = —— q34 = qa6 = {35 = qgg = [ ——
q23 Mn12
_ _ 1 _ _ H12
1 1 1 1
924 =qa1=qo5 =q57 = ———— 423 =q371={qo5 =qg7 = | — (82)
2 T T Jiapias 26 0T T as
qua=qas = qis = qsg = !
15 %8 434924

The group homomorphism between the Sgth— 4, #) groups and the 0, (6 — h, h)
groups is given by

1Yy = bl1b*s — quab*1bY

1Yy = cgt(b*3b*1 — quabsbty)

Y3 = pispgs (br1b% — quab*1b'y)
1Y = g t(b1ab*; — quab*sb™))

tty = H12Cg Ybtab*y — qrab®abts)
Y= aacg T(btab*s — qrab®ab's)

1?1 = csb®1bts — puiobtib,

1y = —cs*q13(csb®1bts — niob'1h%3)
1?3 = uis s (csh1bty — wigbt1b3;)
171 = —cg ' qaa(csh®ab s — piobtob%)

1?2, = —06_16]24(651932b14 — w12b2by)
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1% 3 = —cg qaapaa(csh®1bs — puaob b))

1% 1 = paspaab 1b%s — cab®1b'4

1%y = —quacs (asptasb1b%s — cab®1b"s)
¥y = (b'1b%; — capgzpizab®1b™2)

121 = —qoacs “(1t13t23b ob%s — cab®ob3)
122 = —qoaptiacg “(113itasb ob%s — cab®obs)
1¥3 = —qaapiacy  (Hiaposh sh?s — cabsb’s)
11y = csb>1b%4 — cab®1b3,

11y = —qguacg Ncsb®1b% — cab’bs)

t'y = puia s (csb®1b?s — cab?1b%;)

1Y = —quacs M (csb®b?s — cab?2b%3)

1Y = —qoaptiocg (csb2b%4 — cab?2bs)

tty = —Q34M13cgl(C5b33b24 — c4b?3b*y)

1?1 = ppyceb®1b®s — cab®1b*,

1%y = —quacg "(upyceb*1b%s — cab®1b*3)

1% = pigiips (i ceb®1b%2 — cab®1b%)

12 = —q23c§l(ulecsb42b23 — cab®ob%3)

122 = —qaaptiace (15 ceb ab?s — cab®2b*s)
1%3 = —qaut13cg (s ceb*sb®s — cab®sb™s)
13y = nigceb™1b% — uygcsb1bs

1% = —quacs (g ceb™1b®s — gz csb®1b*s)
13y = pigiag (uizceb™1b% — puy3esb®1b*y)
131 = —q2acs (ni3ceb*2b%s — pyzesbab’s)
1% = —qaapiracg (ni5ceb®ab®s — pogesh®aba)
133 = —qaat1acg  (nigceb?ab®s — o3 csb3by).

The *-structure for the quantum spinors associated to a six-dimensional Minkowski
space is
o = Vuzg® o™ = n12¢°
Y = (d0a/ n1a) Y U = (naano9) 4R, (83)

A.3. Quantum Spjn8 — A, h) groups

Applying requirements (i)—(iv) of our general procedure to the case4, we obtain

C = HiHyH3Hy — aiHiHyHyH) + ap HoHyHyH| — asHsHyHyHy + asHaHyHyH,
—asHyHoH,H} + agHy H3 Hy Hy — a7 HyHyHy H)y — agHo Hs Hy H,
+agHyHyHyH| — ajoHsHyHyH] + a1y HiHy H3 H) — a1pHy HyHy Hy
—a13HoH3HyH + ajsHH3HyHy + HyHyH, H,

with

aip = ai3 = /11413112 a2 = di14 = /2442312
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az = ai» = \/|L13123 134 as = a11 = /|L141124/434
as = aj0 = /{14413 24423 as = ag = \/L14/423/L12/434
a7 = ag = /241341131 12- (84)
The fundamental spinor bilinear is given by
§1CE = ¢'9° + 9°¢" — asp?d” — a109¢? + acd®d° + agp®¢® — a1¢*¢° — agp®¢*
—a1yty® — arsy Pyt + a7 + aa WP — azypPy® — agay Oy
+agp*y® + any Yt (85)
The isotropic coordinates expressed in terms of spinors are
xt = ¢%yt — a1y + aray 9 — asp®Y + asp Y ® — a1ay°¢°

+a1y°¢t — azp*y® (86)
x2 = 9%y % — apu iy v?9® + arau s vie? — asp?y® + aguiy ¢y °

—ap¥®¢® + any®¢® — aguyy¢tyS (87)
3 = 9%y — aauii a3 P08 + araug v — asusy v + aguiz ey’

—a1atog ¥ $° + any®’ — atouiz sz d YO (88)
xt = 9% — aap g ot s AR + arsiig v Be® — arpng sy oW + asnis ety

—a1auo ¥ % + aropz WO — aronig sy vl (89)
X =axy®e’ — a1’V + az®e® + agd®y + asy YO — agp®y*

+aiy et + ¢'y° (90)
X% = arq ¢t — w4+ arte’ + aromad Yt + azpay3et — arpty®

—aapy'e® + agp®y? (91)
X = —a WPt + paapazd WO + arposyte® — aguizg®yt — axpazy iyt

Fazuoap™V? + aspuizpazyie? — asp?yt (92)
X = an Pt — waapoanzap W — arpoauzaie® + agpiap® vt + aspiapoq®e®

—apt2ad>V? — azpraapioay¢? + aspzap®y. (93)

The relationship between the deformation parameters of the, &in/, 1) groups and the
w-parameters of th6 0, (8 — h, h) groups is

q18 = q27 = 436 = 445 = 9,16 = 1015 = q1114 = q1213 = 1 (94)
912 = q28 = q17 =G5 = B

1 13K 14423124
Q13—6138_6]_1_61_1_,/A

16 68 M12/414/434

_ -1 -1 [MH24H34
Na=48=d15 = ds8 = M12/413
_ o1 o1 [Ma2M24
423 =437 = 4y = 47 = 1334

1 1 M12/423/434

924 =447 =Yo5 =457 = | —
K14
_1 M13i24

-1
434 = 446 = 435 = {56 =
% % M14M23
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_ -1 -1 H13ih14
49,10 = 410,16 = 9915 = 41516 —
2324
_ -1 _1 H12/423/414
4911 = 41116 = 9914 — 91416 — +/ —
134

— _,-1 _ -1 __
49,12 = 41216 = 4913 = 91316 — ~ H12124/L131434

-1 -1 [ 13424
41011 = 41115 = 41014 — 91415 =
M12/434

1 1 14423434
41012 = 41215 = 41013 = 91315 =/ —
M12
1 _1 1424
41112 = 41214 = 41113 = 91314 =
M13m23
419 =q816 = G116 = 950 = !
9 = 4816 = Y116 = 4989 =/, . .
M14413/412

1 1 H12
41,10 = 48,15 = 4115 = 4g 10 = \/7
10 U234 24
_ _ H13i23
q1,11 = (qg,14 = 511,%4 = ‘18&1 = \/7
134

-1 -1
91,12 = 48,13 = g1 13 = qg 12 = ~/ M14[424/434

B I e
42,9 = 47,16 = 916 — 97,9 =  M12241423
. ] 1 1314
42,10 = 47,15 = 215 = 4710 =
12
_ ] 1 MH14f424
4211 =4q714 =414 = 4711 =
34
_ _ -1 _ -1 _
42,12 = 47,13 = {3 13 = 47,12 = A/ M13U23U34
_ ] 1 1334
43,9 = 46,9 = 4316 = 96,16 —
24
. 1 -1 H14/434
43,10 = 46,15 = 4315 = 4 10 =
H24
_ 1 -1 Hi12/t14
4311 = 46,14 = 4314 = 4611 =
13
_ 1 1 24012
4312 = 46,13 = {4313 =410 =
23
i | —1 K14
44,9 = 4516 = 4416 = 459 =
M34/424
13

— _ -1 _ -1 _
44,10 = 4515 = 4415 = 4510 =

NS
NN
@ ®
= =
oW
R

_ _ -1 _ -1 _
4411 =4514 =G 14 = 4511 =

=
& %
@

— _ -1 _ -1 _
4412 = 4513 = 4413 = 4512 =

=
~
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The *-structure for the quantum spinors in an eight-dimensional space with Minkowski
signature is
@Y =ays @) =z @) =aspy (9N =avs
@) =y @) =y @) = (D) =aavs (95)
with
2,2 1/4
a1 = (L1apzaitaza) ™ ay = — (MBMW‘)
H2aft14
2,2 1/4 2 2 1/4
5= <M12M23M24> s = — <H12M13M14) . (96)
MH24lL14 24434
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