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Abstract. A general construction of multiparametric quantum spinors and corresponding
quantum Spinµ(2ν − h, h) groups associated to 2ν-(Pseudo)-Euclidean spaces is presented, and
their homomorphism to the respective SOµ groups is discussed. This construction is based on
a quantum Clifford algebra and is described in detail for involutive (pure twists) intertwining
braids. For general braid operators that admit abstract ‘volume elements’, a procedure is also
given for deriving quantum analogues of these groups.

1. Introduction

In their most general mathematical form, spinors were invented by Cartan in 1913, when
investigating linear representations fo simple groups. Cartan’s geometrical approach to
spinors [1], which is based on their connection with isotropic geometrical elements, has
been of fundamental importance for the applications of spinors in the theory of relativity
[2] and for the development of the theory of twistors as a Robinson congruence of null lines
in Minkowski space [3]. Another impressive example of the usefulness of spinor analysis
in a new domain has been provided by Witten in his proof of the positive energy theorem
in Einstein’s relativity [4]. Nevertheless, the geometrical point of view of Cartan, which
stressed the equivalence of projective pure spinors of complex Euclidean spaces with null
planes of maximal dimension in these spaces, and the corresponding projective geometry,
remarkably rich and elegant, was primarily the subject of mathematical studies.

On the other hand, the modern Kaluza–Klein theories of unification of gauge fields and
gravitation, the theories of grand unification and, more recently, superfield, super-string,
membrane and conformal field theories have led to theories which make essential use of
geometries of more than four dimensions. Such higher-dimensional theories are believed
to provide a good chance for the solution of several of the most crucial questions and
problems in four-dimensional unified field theories. This enhanced role of the geometry
of multidimensional spaces—and hence also that of spinor structures and that of ‘pure’
spinors in higher dimensions—in fundamental theoretical physics; exploiting, in particular,
the geometrical properties previously developed by Cartan and others [5], also see [6] and
references contained therein.

Most discussions of Planck-scale physics work, however, within an underlying classical
geometry. This may not be an altogether justified assumption. A kind of deeper quantum
geometry [7], from which classical geometry should emerge, may be required, not only at
the Planck scale and quantum cosmology level, but also to provide the correct language
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for resolving the paradoxes in quantum mechanics related to the macroscopic geometry of
measuring apparati and quantum mechanical evolution. Non-commutative geometry based
on quantum groups and braided groups has appeared in the last decade or so as a plausible
mathematical formalism for formulating questions and making predictions about physics
beyond the Planck scale, by providing the possibility of extending the concepts of gauge
theory, curvature, non-Euclidean geometry and their description in terms of fibre bundles
to the situation where coordinates are non-commuting operators.

Within this program it is expected that a quantum deformation of a Lorentzian manifold,
where functions on spacetime are replaced by some non-commutative algebra, should have
some properties similar to those of the ordinary classical space. Depending on the properties
so chosen, several models for the four-dimensional quantum Minkowski plane and the
corresponding quantum Lorentz [8] and quantum Poincaré [9–11] groups acting on them
having been proposed in the literature.

Also, as soon as coordinate algebras are made non-commutative the choice of
various possible differentiable structures appears as a new degree of freedom. These
possible quantum differential calculi are determined by the selection of the intertwiners
in the quantum algebras, and offer various natural scenarios for constructing fibre bundle
formulations of gauge theories over quantum spaces where symmetry breaking could be
achieved by quantum deforming the classical one.

The main objective of this paper is to consider the possibility of a combined need for
higher-dimensional spaces (d > 4) and their quantum deformations for the description of
physics at and below the Planck length, with quantum spinors and their associated quantum
spin-symmetry groups playing an important role in the ensuing quantum geometry. Under
such circumstances a theory for constructing quantum spinor algebras and the spin quantum
groups related to (pseudo)-Euclidean spaces with 2ν-dimensions, withν ∈ Z+, and metrics
with arbitrary signatures, becomes important. Although pure twisted and the quantum group
Spinµ (4) has been previously treated in the literature (cf the works cited in [8] and [9–11]),
this is not so with higher-dimensional quantum spin groups. It is desirable, in addition,
to have an axiomatic formulation of a deformed spinor theory and quantum spin groups
which preserves Cartan’s geometrical approach as much as possible and, at the same time,
allows one to investigate the implications of different possible choices of intertwiners and
differential calculi, as well as deformations of some of the axioms. For this purpose, and
since spinors are intimately related to Clifford algebras, we have chosen to use as a starting
point for our discussion the theory of quantum Clifford algebras which we have previously
developed [12]. We have concentrated our attention here on involutive intertwiners (better
known as pure twists) for two reasons: first, because calculations, which for higher-
dimensional spaces become much more complicated, remain still tractable for involutive
braids and serve to illustrate the main features of our formalism; second, the resulting
∗-compatible differential calculus for the coordinates—of the subjacent (pseudo)-Euclidean
spaces—allows for the usual interpretation of differentials as shifts of coordinates, and left
and right actions of derivations are, in this case, two representations of the same abstract
operator. Thus we avoid the problems of interpretation associated with the nonlinear and
rather cumbersome derivation operators that occur when considering, for example, Hecke
braidings [11]. It should be clear, however, from the generality of our theory of quantum
Clifford algebras that our constructions can be readily extended to more complicated types
of intertwiners. We discuss such a procedure at the end of the paper.

Another feature of our analysis is that it serves to establish the important general
commutation behaviour of the entries in the quantum block matrices for Spinµ(n). We
show that the entries in each block commute with themselves only for the casen = 4, while
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semi-spinors of a given type commute among themselves only forn = 4, they commute with
those of the other type forn = 6 and are no longer commutative in either case forn > 8.

Finally note that our formalism is also relevant to the study of the theory of deformed
twistors. This follows from the fact that forn = 6, taking the relevant orthogonal group to
beSO(4, 2), the semi-spinors are the univalent four-dimensional twistors and dual twistors,
while for n = 8 the relevant groups to twistor theory areSO(8, C) andSO(4, 4).

In order to make the paper as self-contained as possible, we have structured it as
follows. In section 2 we construct a quantum Clifford algebra and a compatible∗-structure.
By requiring that the fundamental property of spinor transformations be preserved in the
quantum case, a non-commutative algebra is induced for the ‘coordinates’ of the underlying
pseudo-Euclidean spaces. Taking the generators of this algebra as a comodule, linear twisted
group matrices and their orthogonal subgroups with a∗-compatible structure are obtained.

As a separate part of section 2 we include a general construction of quantum analogues of
linear (and orthogonal) groups, starting from appropriate braid operators admitting abstract
‘volume elements’. Conceptually, we shall follow the expositions in [13]. The innovative
part of this subsection is in the systematical use of bicovariant bimodules [14], so that all
braidings in the formalism become the braidings intrinsically associated to the appropriate
bicovariant bimodules. As we shall see, this technique allows us to derive all basic properties
and relations involving quantum determinants in a simple and elegant way and help us to
extend our formalism to more general braids.

In section 3 we develop a pure twisted deformation of Cartan’s spinor algebra and the
corresponding quantum Spinµ(n) groups (forn even), both with a compatible∗-structure
appropriate to a given signature of the pseudo-Euclidean space metric.

Section 4 is devoted to outline an approach to extend our formalism to the case of more
general braids.

Finally, in the appendix the general theory for quantum Spinµ(n) groups, given
in section 3, is applied to the specific cases of involutive twisted braids to quantum
Spinµ(4 − h, h) Spinµ(6 − h, h), Spinµ(8 − h, h), and the morphism of these quantum
spin group matrices to the respective quantum orthogonal matrices is explicitly given. We
also provide the explicit relations which result between the deformation parameters of the
involutive braid matrices associated with the Clifford algebras and those occurring in the
spin group matrices†.

2. GLµ(2ν− h, h) groups

In [12] we presented a theory of quantum Clifford algebras, based on a quantum
generalization of Cartan’s theory of spinors. For even-dimensional spaces (the generalization
to odd-dimensional spaces can be readily performed) the construction starts by considering
the two isotropic subspacesV andV ′ (dim(V ) = dim(V ′) = ν) into which a 2ν-dimensional
Euclidean or pseudo-Euclidean spaceW decomposes, i.e.W = V ⊕ V ′, where, because
of the isotropy,V ′ can be envisaged as the dual toV . The subspacesV , V ′ and C
with the usual tensor products generate a braided monoidal category, where the braiding
σ : V ⊗ V → V ⊗ V satisfies the Hecke conditionσ 2 = (1− µ2)σ + µ2I .

A standard representation of such an operator (coming from quantumSU(n) groups
[16]) is given by σ(ei ⊗ ej ) = µ(ej ⊗ ei) for i < j , while σ(ei ⊗ ei) = ei ⊗ ei and
σ(ei ⊗ ej ) = µ(ej ⊗ ei)+ (1−µ2)(ei × ej ) for i > j . Here{ei}νi=1 are basis elements ofV .

† Throughout the text we shall be using indiscriminatingly the terms involutive and pure twists [15] to mean the
same type of braidings.
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The generatorsH(ei) of the quantum Clifford algebraCl(V, σ ) satisfy the relations

H(ei)H(ej )+ 1

µ2

∑
k,l

(σ )ij
klH(ek)H(el) = 0 (1)

whereσ(ei ⊗ ej ) =
∑

k,l(σ )ij
klek ⊗ el .

Note, however, that these same relations can be obtained by considering the involutive
braid operator fixed byτ(ei ⊗ ej ) = µ−1(ej ⊗ ei) for i < j , andτ(ei ⊗ ei) = ei ⊗ ei .

To derive the remainder of the Clifford algebra we use the right module structure in
V andV ′, defined in [12], as well as the commutative pentagonal diagrams expressing the
compatibility between the braidings extended fromV ⊗V to the spacesV ⊗V ′, V ′ ⊗V and
V ′ ⊗ V ′, and the contraction map betweenV ′ andV . As explained in [12], such diagrams
uniquely fix the corresponding extensions.

Let us denote byρ the extended involutive braiding acting onW ⊗W , obtained by the
above-mentioned procedure, so that

ρ(e′i ⊗ ej ) = µ(ej ⊗ e′i ) ρ(e′i ⊗ e′j ) = µ−1(e′j ⊗ e′i ) i < j

ρ(e′i ⊗ ei) = ei ⊗ e′i ρ(e′i ⊗ e′i ) = e′i ⊗ e′i (2)

ρ(e′i ⊗ ej ) = µ−1(ej ⊗ e′i ) ρ(e′i ⊗ e′j ) = µ(e′j ⊗ e′i ) i > j.

We now introduce a consistent anti-multiplicative∗-structure on our Clifford algebra, by
requiring thatρ satisfy the sufficiency condition

(∗ ⊗ ∗)πρ = ρ(∗ ⊗ ∗)π (3)

whereπ is the standard permutation operator.
For this purpose we first generalize the algebra to a multiparametric one by means of the

changeµ→ µij in the braid relations; such that, fori 6= j we haveµij = µ−1
ji = exp(iθk),

when 16 k 6 (ν − h− 1)(ν − h)/2 andi, j 6 ν − h, and such thatµij = µ−1
ji = exp(iλk)

with 1 6 k 6 h − 1 for i, j 6 ν − h + 1, and finallyµij = µ−1
ji = µk ∈ R, where

1 6 k 6 ν − h with i 6 ν − h, j > ν − h + 1 or j 6 ν − h, i > ν − h + 1. Here the
indexh denotes the number of negative terms in the signature of the metric of the classical
pseudo-Euclidean space, associated with the isotropic basis{ei, e′i}. If we now define

e∗i = bie′i (e′i )
∗ = b−1

i ei i = 1, . . . , ν − h
e∗i = exp(iϕi)ei (e′i )

∗ = exp(−iϕi)e
′
i i = ν − h+ 1, . . . , ν (4)

wherebi , ϕi ∈ R, then it is easy to show that the generalized multiparametric braid relations
are preserved. The choice (4) is clearly motivated by the observation that in the classical

limit, lim ϕi
µij→1−→ 0, limbi

µij→1−→ 1, these relations reduce to the usual complex conjugation
relations for the isotropic bases.

Furthermore, defining the∗-action on the generators of the Clifford algebra by means
of

(H(ei))
∗ = (−1)hH(e∗i ) (H(e′i ))

∗ = (−1)hH(e′∗i ) (5)

we also obtain in the classical limit (µij → 1) the appropriate expression for the Hermitian
adjoint operation on these generators. This∗-structure is compatible withCl(ρ,W).

Let us now define a ‘real’ vector onW by the requirementx∗ = x∗; it then follows
from (4) that the components must satisfy

(xi)∗ = b−1
i x
′i (x ′i )∗ = bixi i = 1, . . . , ν − h

(xi)∗ = exp(−iϕi)x
i (x ′i )∗ = exp(iϕi)x

′i i = ν − h+ 1, . . . , ν. (6)
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We can now use our quantum Clifford algebra to impose a non-commutative algebra with a
consistent∗-structure on the underlying quantum pseudo-Euclidean space, by requiring that
the fundamental property of spinor transformations be preserved in the quantum case, i.e.

H(x)H(x) = 〈x,x〉E. (7)

where〈x,x〉 = x ′1x1+ · · · + x ′νxν is the fundamental quadric.
Under this assumption, and using the linearity ofH(x), it immediately follows that

xixj = mτ̄(xi ⊗ xj ) = µijxjxi x ′ixj = mτ(x ′i ⊗ xj ) = µ−1
ij x

j x ′i

xix ′j = mτ(xi ⊗ x ′j ) = µ−1
ij x
′j xi x ′ix ′j = mτ̄(x ′i ⊗ x ′j ) = µijx ′j x ′i (8)

wherem stands for the multiplication map. Note that〈x,x〉 is central to this algebra, so it
provides a sensible definition of length. Also note that (8) is consistent with the∗-structure
defined above. The involutive braid operator corresponding to the algebra (8) is obtained
from ρ by making the exchangeµij ⇔ µ−1

ij . From this it is evident that this new braid

operator, which we denote bŷR, will also satisfy the braid consistency relation. Moreover,
defining

R := πR̂ (9)

it can be shown thatR is diagonal, and that it satisfies the quantum Yang–Baxter
equation. We denote byA the non-commutative algebra of polynomials in then variables
x1, . . . , xν, x ′1, . . . , x ′ν , and byAR̂ the quotient algebraA/IR̂, whereIR̂ is the two-sided
ideal inA generated by(1− R̂)(x ⊗ x) = 0. ThusAR̂ is the twisted algebra of functions
on the deformedn-dimensional vector space associated with the matrixR̂.

The corresponding pure twisted general linear group, associated to the matrixR, follows
readily from giving AR̂ a comodule structure and applying the general formalism for
quantum groups (see e.g. [13]). We thus obtain for the bialgebraTR, generated by the
entries of the matrixtαβ , the commutation relations

µαβt
β
τ t
α
σ = µστ tασ tβτ (10)

with

µαβ =
(
µij µ−1

ij

µ−1
ij µij

)
. (11)

Now imposing our∗-structure on the comodule actionδ : AR̂ → TR ⊗ AR̂ by the
requirement thatδ is Hermitian, it is easy to compute the corresponding∗-structure on the
algebraAR̂. In general, the consistency between the product and the∗-structure is ensured
by the construction.

Let us now assume that the algebraTR is ‘enlarged’, by introducing the inverse of the
corresponding quantum determinant (an alternative general and what we believe is a novel
approach to this procedure is presented in detail in the following subsection). We shall
denote this enlarged algebra byT̄R.

Then it is possible to introduce the antipode mapκ : T̄R → T̄R, by requiring
amtimultiplicativity, and

m(κ ⊗ id)φ(tαβ) = m(id⊗ κ)φ(tαβ) = δαβ. (12)

The bialgebraT̄R becomes a deformed Hopf algebra with a compatible∗-structure.
The components of the fundamentalR-matrix associated with our quantum group are

given by

Rαβστ = µβαδασ δβτ . (13)
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Comparing these expressions with those obtained by Schirrmacher [17] in his treatment of
multiparametric deformations ofGL(n), it is clear that the matrix pseudo-group involved
in our theory is a particular case ofGLX,qij (n − h, h), with X = 1 and the parameters
related by (11). This result, of course, comes without surprise since our intertwiners were
taken to be involutive to start with. Note, however, that the basis for our construction is
completely different, since it hinges on the idea of utilizing our previously developed theory
for a quantum Clifford algebra and adopting the ansatz (7) to induce the comodule structure
AR̂ for the ‘coordinates’. Furthermore, as shown in the following subsection together with
section 4, our previous analysis can be readily extended to the general construction of
quantum analogues of linear (and orthogonal) groups, starting from general braid operators
admitting abstract ‘volume elements’.

2.1. General quantum determinants and associated quantum groups

In this subsection we shall abstract our previous analysis, and present a general construction
of quantum analogues of linear (and orthogonal) groups, starting from the appropriate braid
operators. We shall consider general (not necessarily involutive braidings) admitting abstract
‘volume elements’. Conceptually, we follow [13], however in contrast to these papers we
shall systematically use here the formalism of bicovariant bimodules [14], this allows us to
derive the properties of the associated quantum determinants in a concise and elegant way.

In accordance with the notation introduced in the text and in [12], letZ be the
vector space generated by the coordinateszα. We shall denote byR : Z⊗2 → Z⊗2 the
canonical braid operator (defining relations in the algebra of coordinates). Let us assume
thatR : Z⊗2 → Z⊗2 is such that there existsn ∈ N and an elementw∗ ∈ Z∗∧n\{0} such
that f ∧ ω∗ = 0 for eachf ∈ Z∗.

It is important to observe thatn 6= d = 2ν = dim(Z) in general (although in various
interesting special cases the two numbers will coincide).

We shall also assume that the pairing betweenZ andZ∗ is defined by

〈z ⊗ f 〉 = 〈R(z ⊗ f )〉 (14)

where the symbolR will be used for all the braidings appearing in the braided monoidal
category generated byZ, Z∗ and the initial braiding. Finally, let us assume that this pairing
is non-degenerate

Proposition 2.1. Under the above assumptions we have the following symmetry property:

dim(Z∧k) = dim(Z∧(n−k)). (15)

In particular, dim(Z∧n) = 1 andZ∧k = {0} for k > n.

Proof. Let us consider the quantum Clifford algebraCl(Y ) associated toY = Z⊕Z∗ and
the corresponding braidingR. Furthermore, let us assume thatZ∗∧ is embedded inZ∗⊗

with the help of the inverse braidingR−1 : Z∗⊗2→ Z∗⊗2. The formulae

H(f )ψ = f ∧ ψ H(z)ψ = ιzψ
wheref ∈ Z∗ and z ∈ Z, define a representationH of Cl(Y ) in Z∗∧. Observing that
H(Z∗)ω∗ = {0} and applying the results from [12], it follows that there exists (the unique)
injection ρ : Z∧ → Z∗∧ intertwinning the corresponding representations and satisfying
ρ(1) = ω∗. In particular, ρ(Z∧k) ⊆ Z∗∧n−k and hence dim(Z∧k) 6 dim(Z∗∧n−k) =
dim(Z∧n−k). Henceρ is bijective. �
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Let ω be the corresponding volume element inZ∧n. Let TR be the matrix bialgebra
generated by abstract matrix elementstαβ and the relations coming from the requirement
thatR : Z⊗2→ Z⊗2 intertwinesT ∈ Md(TR).

By construction we have a natural coactionT : Z→ TR⊗Z. This coaction map admits
the unique unital multiplicative extensionT ∧ : Z∧ → TR ⊗ Z∧. In particular, we have

T ∧(ω) = 1⊗ ω (16)

where1 ∈ TR is an element which will be called the quantum determinant. From the
comodule property we find

φ(1) = 1⊗1 ε(1) = 1.

Let us assume thatZ∧ is embedded inZ⊗, via the braidingR. We can write

ω =
∑
α

sα ⊗ zα (17)

wheresα ∈ Z∧n−1.

Lemma 2.2. The elementssα form a basis inZ∧n−1.

Proof. This is a consequence of considerations contained in the previous proof. �

Hence, we can writeT ∧(sα) =∑β t̄
α
β ⊗ sβ , wheret̄ αβ satisfyφ(τ̄ αβ) =

∑
γ t̄

α
γ ⊗ t̄ γ β

andε(t̄αβ) = δαβ .
Let us consider a scalar matrixS given by

zβ ∧ sα = Sβαω. (18)

Lemma 2.3. The matrixS is invertible.

Proof. More generally, let us consider a pairing [|] : Z∧k ⊗ Z∧n−k → C given by

[ϑ |η]ω = ϑ ∧ η.
It follows from the proof of proposition 2.1 that this pairing is non-degenerate. �

Now we can derive two algebraic relations between matrixesT and T̄ .

Proposition 2.4. We have

1E = (T̄ )∼T (19)

1E = T S(T̄ )∼S−1. (20)

Proof. This is a direct consequence of (16), (17) and (18). �

Let T̄R be the algebra obtained by adding toTR the formal inverse of1. It is easy to
see thatφ andε admit natural extensions tōTR.

Proposition 2.5. (i) The matrixT is invertible inMd(T̄R) and

T −1 = 1−1(T̄ )∼ = S(T̄ )∼S−11−1. (21)

(ii) There exists the antipode mapκ : T̄R → T̄R, and in particularκ(T ) = T −1.
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Proof. The statement (i) is a consequence of the previous proposition. The second
statement follows from the observation that the relations definingT̄R are compatible with
inverting1 andT . �

The constructed quantum groupG ↔ T̄R is the analogue of the general linear group.
Note that such a construction allows the interpretation in terms of bicovariant bimodules.
The formula

R(zα ⊗ zβ) =
∑
γ

(tβγ ◦ zα)⊗ zγ (22)

consistently and uniquely determines a leftT̄R-module structure onZ so that the triple
(Z, ◦, T ) determines a bicovariant bimodule0 overT̄R. Similarly, the formulaea◦1= ε(a)1
anda ◦ (ϑη) = (a(1) ◦ ϑ)(a(2) ◦ η) determine leftT̄R-module structures onZ∧,⊗. The space
Z is interpretable as the right-invariant part of0 ↔ Z ⊗ T̄R, andT is the restriction onZ
of the corresponding left action mapl0 : 0→ T̄R ⊗ 0.

In particular,

T ∧(a ◦ ϑ) =
∑
k

a(3)ckκ(a
(1))⊗ (a(2) ◦ ϑk) (23)

where
∑

k ck ⊗ ϑk = T ∧(ϑ). Furthermore, we have

a ◦ ω = ωλ(a) (24)

whereλ : T̄R → C is a (non-trivial) linear multiplicative functional. This fact can be used
to derive a simple commutation relation between1 and elements of̄TR. LetD : T̄R → T̄R
be an automorphism given by

D = (id⊗ λ)ad (25)

where ad : T̄R → T̄R ⊗ T̄R is the corresponding adjoint action, explicitly given by
ad(a) = a(2) ⊗ κ(a(1))a(3).

Lemma 2.6. We have

1a = D−1(a)1 (26)

for eacha ∈ T̄R.

Proof. A direct computation gives

T ∧(a ◦ ω) = 1⊗ ωλ(a) = a(1)1κ(a(3))⊗ ωλ(a(2)).
In other words1λ(a) = a(1)1κ(a(3))λ(a(2)). Equivalently, (26) holds. �

To conclude this subsection, let us analyse the quantum determinant1 of the orthogonal
subgroups ofG. Let us assume that the spaceZ is endowed with a (not necessarily positive)
scalar product (,) such that (ω,ω) 6= 0. Here we have assumed that (,) is naturally extended
to Z⊗.

Let C be the Hopf algebra obtained from̄TR by requiring the invariance of (,) under
T ⊗2. This C represents the corresponding orthogonal group. We shall denote by the same
symbols the projected entities.

Lemma 2.7. We have

12 = 1. (27)
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Proof. Applying the invariance condition we find(ω, ω) ⊗ 1 = (ω, ω) ⊗ 12, and hence
(27) holds. �

Thus, we can write

1 = P+ − P− P± = (1±1)/2
where

P 2
− = P− P 2

+ = P+ P−P+ = P+P− = 0

in the framework ofC. Let J ⊆ C be the set consisting of elementsb satisfying

1b = b⇔ P−b = 0.

The setJ is a co-ideal and a two-sided ideal inC. Moreover,κ(J ) ⊆ J , and hence it
is possible to factorize throughJ . Geometrically, this corresponds to passing to the normal
subgroup consisting of unimodular matrices.

2.2. Oµ(2ν − h, h) groups

We shall now require that the fundamental quadric〈x,x〉, which was previously shown to
be central to the algebra of ‘coordinates’, should be invariant under the co-actionδ. Thus
we must have

T̃

(
0 Iν
Iν 0

)
T =

(
0 Iν
Iν 0

)
(28)

whereIν is the identity matrix inν-dimensions.
Moreover, making use of the bicovariant bimodule interpretation (22) explained in

subsection 2.1 and applying it to our specific involutive braiding determined by equations (8),
we have

R̂(xi ⊗ xj ) = µijxj ⊗ xi =
∑
α

(tj α ◦ xi)⊗ xα ⇒ t j α ◦ xi = µij δj αxi (29)

R̂(x ′i ⊗ xj ) = µ−1
ij x

j ⊗ x ′i =
∑
α

(tj α ◦ x ′i )⊗ xα ⇒ t j α ◦ x ′i = µ−1
ij δ

j
αx
′i (30)

R̂(xi ⊗ x ′j ) = µ−1
ij x
′j ⊗ xi =

∑
α

(tj
′
α ◦ xi)⊗ xα ⇒ t j

′
α ◦ xi = µ−1

ij δα
j ′xi (31)

R̂(x ′i ⊗ x ′j ) = µijx ′j ⊗ x ′i =
∑
α

(tj
′
α ◦ x ′i )⊗ xα ⇒ t j

′
α ◦ x ′i = µij δαj ′x ′i . (32)

Consequently,

tβα ◦ ω =
2ν∑

α1...α2ν

(tβα2ν ◦ x ′ν) ∧ · · · ∧ (tαν αν−1 ◦ x ′1) ∧ (tαν αν−1 ◦ xν) ∧ · · · ∧ (tα1
α ◦ x ′1)

= ωδβα. (33)

This in turn implies thatλ(T ) = I . Furthermore, sinceλ is a homomorphism of algebras,
λ(κ(T ))λ(T ) = I , i.e. λ(κ(T )) = λ(T )−1 = λ(T ) = I . Hence

D(tβα) = λ(tβγ )λ(κ(tγ δ)⊗ (λ⊗ id)ad(tδα) = tβα. (34)

It then follows from lemma 2.6 that (28) implies that the determinant of our quantum
matrices is central, while lemma 2.7 shows that this determinant1 is subject to the additional
restriction12 = 1.

Finally, it also follows from (28) that

κ(T ) =
(

0 Iν
Iν 0

)
T̃

(
0 Iν
Iν 0

)
. (35)
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3. Twisted spin groups associated to 2ν-(Pseudo)-Euclidean spaces

In the preceding section we have developed a∗-structure compatible algebra for the
twisted groups of proper and improper rotations in (pseudo)-Euclidean spaces of arbitrary
even dimensions and arbitrary signatures of the metric. Our formalism resulted from
first considering a quantum Clifford algebra based on an involutive braid operator. By
requiring that the fundamental property of spinor transformations—given by equation (7),
be preserved, we obtained an algebraAR̂ for the coordinatesof the underlying (pseudo)-
Euclidean spaces. We then constructed a twisted matrix algebraTR from the comodule
structure ofAR̂. By further restricting the resulting pseudo-group to leave invariant the
fundamental quadric〈x,x〉, we arrived at our desired results.

The program we propose to develop in this section beings also with the multiparametric
quantum Clifford algebraCl(W, ρ), together with the preservation of the property (7) for the
spinor transformations and the resulting deformed algebra (8) for the coordinates. However,
instead of considering the quantum matrix group which co-acts on the quantum plane
generated by these coordinates, we shall construct the quantum groups associated directly to
spinor transformations, i.e. the quantum Spinµ(2ν) groups. We consider it important at this
point to stress the fact that even though Spinµ(4) groups have been considered previously in
the literature [9–11], and even though our results forν = 2 agree with those of some of the
referred authors, our formalism, based on quantum Clifford algebras and quantum spinor
spaces, allows for a general consideration of quantum spin groups for any dimensions and
signatures of the underlying (pseudo)-Euclidean spaces. It is also important to mention that
our constructions are applicable to the general (non-involutive) braid operators. However,
some constructions and concrete computations will be worked out in the context of the
braidings given byρ.

To begin, recall [1] that the quantum Clifford product is uniquely determined by the
relations

H1 · 1= ei Hi · ej = ei ∧ ej H ′I · ej = ιe′i ej = e′i (ej ) = δij (36)

where{ei} is the isotropic basis inV , introduced in section 2,{e′i} is the reciprocal basis in
V ′, andHi ≡ H(ei), H ′i ≡ H(e′i ). We can then define a quantum spinor by

ξ =
ν∑

p=0

∑
k1<···<κp

ξ k1...kp ⊗Hk1 . . . Hkp · 1 (37)

where the 2ν componentsξk1...kp are the generators of a non-commutative free algebraS,
and the symbol

∑
k1<···<kp is to be interpreted as no sum in the casep = 0, soξk1...kp = ξ0

whenp = 0.
Note that in the classical limitµij → 1, the above expression reduced to the usual

definition of a spinor as an element in the graded Grassmann algebra of the basis vectors
in the corresponding (pseudo)-Euclidean space to which the spinor is associated.

We can introduce a bilinear inner product on the quantum spinor spacesS by first
defining the involutive and anti-multiplicative T-transpose operation,ξ ∈ S → ξT ∈ S ′,
which maps linearly spinors inS to spinors in the dual spaceS ′. This operation is uniquely
defined by its action on the generators of the Clifford algebra:

1T = 1′ H T
i = H ′i (HiHj )

T = H ′jH ′i . (38)

Hence the T-transpose operation maps Clifford product from the left to Clifford product
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action from the right, and

ξT =
ν∑

p=0

∑
k1<···<kp

ξ k1...κp ⊗ 1′ ·H ′kp . . . H ′k1
. (39)

Note that by virtue of (36) and (38) the elements{(Hk1 . . . Hkp · 1)T = 1′ ·H ′kp . . . H ′k1
} form

a basis reciprocal to{(Hk1 . . . Hkp · 1}, k1 < · · · < kp, which allows us to define a scalar
product for homogeneous spinors ofp-degree, given by

[(ξ (p))T, η(p)] : =
∑

k1<···<kp
ξ k1...kpηk1...kp ⊗ [1′ ·H ′kp . . . H ′k1

, Hk1 . . . Hkp · 1]

=
∑

k1<···<kp
ξ k1...kpηk1...kp ⊗ 1′ ·H ′kp . . . H ′k1

Hk1 . . . Hkp · 1

=
∑

k1<···<kp
ξ k1...kpηk1...kp ⊗ 1. (40)

Requiring that the scalar product of any two spinors respects gradation, we thus have

[ξT, η] =
ν∑

p=0

∑
k1<···<kp

ξ k1...kpηk1...kp . (41)

Also, in analogy to the classical Cartan spinor theory, we can define a fundamental spinor
bilinear by means of

(ξ, ξ) = [ξT, C · ξ ]. (42)

HereC is a spinor metric operator given by

C =
ν∑

p=0

(−1)(ν−p)(ν−p+1)/2

×
∑
π∈Sν

π(1)<···<π(p)
π(p+1)<···<π(ν)

(−1)l(π)aπ(1)...π(p)(µ)Hπ(1) . . . Hπ(p)(Hπ(p+1) . . . Hπ(ν))
T

(43)

with l(π) = length of the permutationπ and, for the case of pure twists,

aπ(1)...π(p) = [µ〈π(1)π(ν)〉 . . . µ〈π(1)π(p+1)〉 . . . µ〈π(p)π(ν)〉 . . . µ〈π(p)π(p+1)〉]1/2

aπ(1)...π(ν) = a0 = 1 (44)

where the symbol〈 〉 denotes pair ordering of indices so that the first one is lower than the
second.

It is easy to verify that with (43)

CT = (−1)ν(ν+1)/2C (45)

and

(ξ, ξ)T = (−1)ν(ν+1)/2(ξ, ξ) (46)

which is the quantum analogue of polarity of the spinor bilinear (42).
Making use of (43) it can be readily shown that (42) may be written as

(ξ, ξ) =
ν∑

p=0

(−1)(ν−p)(ν−p+1)/2
∑

π(1)<···<π(p)
π(p+1)<···<π(ν)

(−1)l(π)aπ(1)...π(p)ξ
π(1)...π(p)ξπ(p+1)...π(ν). (47)
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Now, taking as a basis the 2ν elements of the quantum Clifford algebra{1, Hk1 . . . Hkp |k1 <

k2 < · · · < kp, p = 1, 2, . . . , ν} ordered in such a way that those with an even number of
indices and in an increasing degree sequence come first, followed by those elements with
an odd number of indices also in an increasing degree sequence, we can write a spinor as
a column vector where the first 2ν−1 entries correspond to a semi-spinor of the first type
(which we shall denote byϕ), while the last 2ν−1 entries correspond to a semi-spinor of the
second type (which we shall denote byψ), in Cartan’s terminology.

It is evident from (47) that the fundamental spinor bilinear involves products of
components of semi-spinors of the same type ifν = even while if ν = odd the products
are of semi-spinors of the two different types.

In the classical Cartan spinor theory, the action of the operatorH(x) =∑ν
i=1(x

iHi +
x ′iH ′i ) on spinors, withx a unit vector, corresponds to a reflection in the hyperplane
perpendicular tox. A proper rotation on vectors then corresponds to an even product of
Clifford operators acting on spinor space. Thus, relative to the above-described basis, the
spin group matricesB are block diagonal.

Taking the entries of such a matrix as the generators of the free algebraB of non-
commutative polynomials, and requiring thatB satisfies the connection axiom

φ(a · b) = φ(a) · φ(b) ε(a · b) = ε(a) · ε(b) ∀a, b ∈ B (48)

equipsB with a bialgebra structure.
Furthermore, since our quantum Clifford algebra involves an involutive multiparametric

braid, it is natural to expect such a braiding forB. Imposing the requirement that detqB = 1
we have, making use of the results of Schirrmacher [17], that

bαβb
λ
σ = qαλ

qβσ
bλσ b

α
β (49)

where, because of the block-diagonal structure of the matrixB, the indicesα, β, λ, σ ∈ Z
take values ranging from 1 to 2ν−1 or from 2ν−1+ 1 to 2ν , and

qαλ = q−1
λα if α 6 λ. (50)

We can then construct a quantum matrix algebra by considering the quotient algebra
BR = B/IR by the two-sided idealIR generated by the braid type relationsR(B ⊗ I )
(I ⊗ B) = (I ⊗ B)(B ⊗ I )R.

Moreover, from the above-constructed involutive braid operator for theB matrices, we
can obtain the associated quotient algebraSR̂ = S/IR̂, whereIR̂ is the two-sided ideal inS
generated by(1− R̂)(ξ ⊗ ξ) = 0 and, as before,̂R = πR. Since(1− R̂)(δ(ξ)⊗ δ(ξ)) = 0,
SR̂ acquires a comodule structure with a co-action map

δ : SR̂ → BR ⊗ SR̂ (51)

defined by

δ(ξα) =
2ν∑
β=1

bαβ ⊗ ξβ. (52)

To obtain the different quantum spin groups, we need to impose additional constraints onBR
which, as suggested by the classical spinor theory, should be determined by the fundamental
spinor bilinear (42). Thus we shall require that

(i) the spinor bilinear (ξ, ξ ) be central relative to the algebraSR̂;
(ii) the quantum determinant of each block in the matrixB should be central and

unimodular;
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(iii) the spinor bilinear should be invariant under the coaction mapδ. In other words
δ : (ξ, ξ)→ 1⊗ (ξ, ξ). This in turn implies

bαλb
β
σCαβ = Cλσ (53)

whereCαβ are the matrix elements of the spinor metric in terms of compound indices
determined by (44), (47) and the specific ordering described previously. Note from (53)
that since the matrixC is invertible,κ(B) = C−1B̃C.

For the final axiom we need to consider the analogue of the classical homomorphism
property, relating spin groups and (pseudo)-Euclidean groups. For this purpose let us first
define the ‘spacetime coordinates’ as

xα = (ξ,Hαξ) = ξTCHαξ. (54)

The indices of these ‘coordinates’ are lowered and raised with the metric of the
fundamental quadric〈x,x〉. Hence we can rewrite (54) as

xα = ξTCH T
α ξ. (55)

Co-acting withBR on (55) according to (52) we have

δ : ξα → bσ λCσβb
γ
µ(H

T
α )βγ ⊗ ξλξµ (56)

and making use of (53) we obtain

δ : ξα → Cλσ (κ(B))
σ
β (H

T
α )βγ b

γ
µ ⊗ ξλξµ. (57)

Thus,
(iv) assume that the vector space of generatorsHα is invariant under the constructed

adjoint actionδ.
Axiom (iv) allows us to define the quantum matrix elementstαβ by

κ(B)H T
α B = tαβH T

β (58)

so

δ : ξα → tαβ ⊗ ξβ = tαβCλρ(H T
β )ρµ ⊗ ξλξµ

= tαβ ⊗ (ξ,H T
β ξ). (59)

The geometrical meaning of (58) is that after restricting the adjoint action on the space
of generatorsHα, we should obtain the standard action of the quantum orthogonal group
(as in the classical theory). It is worth mentioning that in lower dimensions such invariance
holds automatically.

These axioms are sufficient to determine univocally and consistently the quantum spinor
algebra and quantum spin groups since they give the quantum parameters in (49) in terms
of theµ’s of our Clifford algebra. However, they may not all be necessary. In fact, note
in particular that the centrality of the quadratic form (ξ, ξ ) can bederived from the other
conditions, so it is not actually an axiom but a consequence of the general property that
every left-invariant element in a braided-symmetric algebra, built over the right-invariant
part of an arbitrary bicovariant bimodule, is automatically central. In more detail, using
conditions (ii)–(iv) and applying the general methods for constructing Hopf algebras via
intertwiner-type relations, we end up with a Hopf algebraB′ based on the matrixB. The
later describes the co-actionδ on the spinor vector spaceS:

δ(ξ i) =
∑
j

bij ⊗ ξ j .

Furthermore, it can be shown that the spaceS is equipped with a natural left-module structure
◦ overB′, so thatS is interpretable as a right-invariant part of a bicovariant bimodule4.
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Now, it is sufficient to observe that the braid operator generating the algebraSR̂
is precisely the braiding intrinsically associated to4. In other words, the braiding is
ξ i ⊗ ξ j 7→∑

k(b
i
k ◦ ξ j )⊗ ξk, and the property (i) easily follows.

We have included (i) in the list of conditions because of its importance in practical
calculations (particularly for higher-dimensional spaces).

Finally, let us observe that the following interesting property holds. If we particularize
the considerations to the involutive braidings we considered, then it turns out that
contragradient ‘coordinates’, expressed in terms of (55), satisfy the commutation relations
(8) with µij → µ−1

ij . Furthermore, a more detailed analysis shows that it is not possible
to avoid consistently this ‘2-periodicity’. However, as we shall see, our construction still
gives the appropriate quantum orthogonal group as a homomorphic image of the quantum
spin group. It is also worth noticing that a similar phenomena appears in our general theory
of quantum Clifford algebras [12], where Clifford algebras associated to coordinates and
derivatives are related by the same kind of transformation of the deformation parameters.

To further clarify the above remarks, note that multiplying (58) by itself from the right
and from the left, adding the results, and making use of the Clifford algebraCl(ρ,W) with
µαβ given by (11), we can write

κ(B)(H T
α H

T
β + µ−1

αβH
T
β H

T
α )B =

∑
i,j

(tαi t
β
j − µ−1

αβ µij t
β
j t
α
i)H

′
i H
′
j

+
∑
i,j

(tαi ′ t
β
j ′ − µ−1

αβ µij t
β
j ′ t
α
i ′)HiHj +

∑
i,j

(tαi t
β
j ′ − µ−1

αβ µ
−1
ij t

β
j ′ t
α
i)H

′
i Hj

+
∑
i,j

(tαi ′ t
β
j − µ−1

αβ µ
−1
ij t

β
j t
α
i ′)HiH

′
j . (60)

Furthermore, usingCl(ρ,W), the left-hand side of (60) becomes LHS= (δαlδβ l′+δαl′δβ l)E.
It clearly follows then that thetαβ on the RHS must satisfy (10) with the replacement
µαβ → µ−1

αβ , together with∑
i

(tαi t
β
i ′ + tαi ′ tβ i) = δαlδβ l′ + δαl′δβ l. (61)

This last result is equivalent to (28), so invariance of the fundamental spinor bilinear implies
invariance of the quadric〈x,x〉. Thus we have established the homomorphism of our
quantum spin groups with theSOµ groups.

In order to be able to account for the different possible signatures of the underlying
(pseudo)-Euclidean spaces, we need to introduce a compatible∗-structure for the algebras
SR̂ and BR. Such a∗-structure can be readily obtained by recalling the∗-structure that
we derived for the ‘coordinates’ in the preceding section (cf equation (6)), making use of
(55) which relates ‘coordinates’ to spinor components, and requiring that(δ(ξ i1,...,ip ))∗ =
δ((ξ i1,...,ip )∗).

Note that our construction involves expressing univocally the 2ν−1(2ν − 1) parameters
qαβ in the quantum spin matrices in terms of the(1/2)ν(ν − 1) parameters of the Clifford
algebra. Except for the caseν = 2, this is a highly overdetermined and non-trivial problem,
which is solved by applying the axioms (i)–(iv) above. We have concentrated in the
appendix the results forν = 2, both for the Euclidean and Lorentzian metrics, as well as
for the casesν = 3, 4 (also for Euclidean and Lorentzian metrics) which further illustrates
our construction and, as pointed out in the introduction, may be the most relevant to the
deformation of physics theories in higher dimensions and deformed twistor theory.

Due to the relative complexity involved in solving for the parameters in the quantum
spin matrices in terms of those in the original Clifford algebra, in particular for the cases
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of higher-dimensional spaces, it is worthwhile to consider the possibility of alternative
approaches which might lead to a simplification of our calculations and constructions. One
such possible approach originates from the works of Drinfel’d and Reshetikhin [15] (cf
also the related discussion in [18]) which allows one to obtain multiparametric quantum
groups by ‘twisting’ arbitraryq-groups with a diagonal matrixF = diag (f11, f12, . . . , fnn),
subject to the conditionfijfji = 1. The geometrical meaning of these quantum group
twists has been investigated by Chaichian and Demichev [10] who showed that twists may
be understood asq-deformed coordinate transformations by means of an auxiliary algebra
of q-deformedn-beins. Thus, in particular, we could consider starting our formalism with
ordinary commutative objects and classical groups, and try to arrive at our final constructions
and pure twisted groups via this technique.

Specifically, by virtue of the fact that (7) is frame independent, a quantum transformation
of coordinates using theq-beins implies immediately a deformation of the Clifford algebra to
Cl(ρ,W). We could then indeed start with commuting coordinates and the classical Clifford
algebra, and using Cartan’s formalism in such a frame-independent fashion attempt to derive
the quantum spin groups in an alternative and perhaps simpler manner. In fact, we have
essentially followed such a construction in [19], using the well known fact that the elements
of the spin group are the even elements of the Clifford algebra. Thus proper rotations are
given by operators of the formB = H(x)H(y) and their products. ClearlyB may be
calculated in the frames of commuting coordinates and the classical Clifford algebra, and
perform the deformations afterwards by means of theq-beins, to get the associated deformed
matrix. Note, however, that these rotation operators co-act on spinors and not on the vector
space of the generators of the algebra of the coordinates. Consequently, the corresponding
twisted matrices are expressed in terms of the spinor basis generated by the Clifford algebra
(cf equation (37)), with the ordering described in the paragraph following equation (47).
This means, in particular, that the analysis in [10] cannot be used directly to infer that these
twisted spin group matrices satisfy the axioms of deformed Hopf algebras and that they can
be associated to a quantum group. As it turned out, the entries in the resultingB matrix
have commutation relations determined by the algebra of the coordinates (8), extended to
apply to coordinates of different vectors. This algebra ofB does not satisfy the usual axiom
for the coproduct and, therefore, does not lead to a quantum group. We did show in fact
in [19] that, working in the context of braided categories and specifically using the same
braid of the coordinates for the braid of the coproduct, one could interpret the twistedB

matrices as being actually elements of a braided spin group and not a quantum group. For
further details on this approach, we refer the reader to the above-cited paper. As a final
remark on this issue, we note that although we could still apply theq-bein technique to the
classical block diagonal matrices of the spin group to get an algebra for the corresponding
twisted quantum group, such a procedure would not be of much help in simplifying the
calculations needed to relate the parameters of the resulting twisted group with those of the
Clifford algebra. To obtain this relation it is essential to use axioms (iii) and (iv) of our
construction, which cannot be derived by theq-bein technique.

On the other hand, the use of the technique of Drinfel’d and Reshetikhin [15], would be
important for the construction of quantum spin groups from non-involutive Clifford algebra
braids, along the lines proposed in the next section.

4. Quantum spin groups from non-involutive braids

As mentioned in the introduction, involutive braids although simple, are not trivial. From
a mathematical point of view very interesting purely quantum phenomena already appear
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at the level of diagonalR-matrices, as for example possible deviations, from its classical
counterpart, in the Poincaré series of the braided exterior algebra. On the other hand, it is
possible that such milder deformations might turn out to be physically less interesting.

This, however, does not pose a major limitation to our approach since, as we also have
mentioned previously, the essential concepts of our formalism should apply equally well
to more general braidings. Thus, in order to complete the discussion, we shall concentrate
in this last section in providing an outline of the steps that would have to be followed
to extend our procedure to more general braidings associated with our general theory of
quantum Clifford algebras. (The intermediate steps are very much suggested by following
the presentation in sections 2 and 3.) For this purpose, we recall first that the braiding in
our quantum Clifford algebra [12] is given by the block matrix

ρ =


µ−2σ 0 0 0

0 0 σ−1 0
0 σ 0 0
0 0 0 µ−2σ

 . (62)

In the above matrix, the operatorσ has been extended fromV ⊗ V to the braiding on
the direct sumW = V ⊕V ′. This extension is fixed uniquely and consistently by requiring
the functoriality of the corresponding contraction maps, as explained in the above referred
paper. The blocks of the extension are denoted by the same symbolσ , a notation which
should not lead to any confusion as theσ ’s are uniquely fixed by specifying the domains.
This construction implies immediately that the operatorρ satisfies the braid equation.

Another way to verify that (62) satisfies the braid equation is by directly considering the
action of both sides of that expression on all possible triple tensor products of the subspaces
V andV ′, with ρ given by (62), and then applying linearity. Furthermore, using (7) again
as an ansatz we arrive at thêR matrix

R̂ =


µ2σ̃−1 0 0 0

0 0 σ̃ 0
0 σ̃−1 0 0
0 0 0 µ−2σ−1

 (63)

which, by construction, also satisfies the braid relation. This implies that the universal
matrix R = πR̂ obeys the Yang–Baxter equation, which guarantees consistency of the
‘RT T ’ equations and which, in turn, define a quantumGL(n) group.

As a next step we impose the sufficiency condition (3) in order to introduce the concept
of reality as well as a consistent∗-structure forR and for the Clifford and ‘coordinate’
algebras. In addition, and having in mind higher-dimensional spaces, we make use of the
technique of Drinfel’d and Reshetikhin [15], to obtain a multiparametricR(F)-matrix from
our one-parameterR by ‘twisting’ with a unitary (so as to respect the∗-structure) matrix
F .

From this stage on we would only have to follow, in principle and with the appropriate
modifications, the steps detailed in sections 2 and 3 to arrive at the different quantum spin
groups. More specifically, we would need to use the lemmas in section 2.1, applied to our
new braidings, to verify that the requirement of invariance under the coaction mapδ of
the central fundamental quadric〈x,x〉, leads to centrality of the determinant1 and to the
additional restriction12 = 1. Finally, we would follow the procedure in section 3 to derive
the commutation relations for the spin matrices, and use the axioms (i)–(iv) to reduce the
number of parameters occurring in these commutation relations, and relate them to the ones
involved in the Clifford algebra. Axiom (iv), in particular, would help to establish as well
the homomorphism with the quantumSO(2ν) groups.
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The details of the above program are part of an ongoing research program by the authors
and will be presented separately.
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Appendix. Quantum Spinµ(2ν − h, h),ν = 2, 3, 4

A.1. Quantum Spinµ(4− h, h) groups

In this case the spinor metric operator (43) becomes

C = H1H2−√µH1H
′
2+
√
µH2H

′
1−H ′2H ′1 (64)

and a quantum spinor, in the ordering described above, is given by

ξ = φ1+ ψ1H1+ ψ2H2+ φ2H1H2. (65)

Hence the fundamental spinor bilinear has the form

ξTCξ = φ2φ1 = √µψ1ψ2+√µψ2ψ1− φ1φ2. (66)

The non-zero components of the multiparametric braid operator for a fourth-rank unimodular
quantum matrix are

R = diag{1, q−1
12 , q

−1
13 , q

−1
14 , q12, 1, q−1

23 , q
−1
24 , q13, q23, 1, q−1

34 , q14, q24, q34, 1}. (67)

From this it follows that the generators ofSR̂ satisfy the algebra

φ1φ2 = q12φ
2φ1 ψ1ψ2 = q34ψ

2ψ1

φ1ψ1 = q13ψ
1φ1 φ1ψ2 = q14ψ

2φ1 (68)

φ2ψ2 = q23ψ
1φ2 φ2ψ2 = q24ψ

2φ2.

Now the requirement of centrality of (66) relative toSR̂ implies

q12 = q34 = 1 q14 = q23 = q−1
24 = q−1

13 . (69)

Using (69), the commutation relations (68) are equivalent to those obtained by Chaichian
and Demichev (cf the first paper cited in [10]). The invariance of (66) under the co-action
map leads to

δ : (ξTCξ) = (b2
ib

1
j − b1

ib
2
j )⊗ φiφj −√µ(b3

ib
4
j − b4

ib
3
j )⊗ ψiψj

= 1⊗ (ξ, ξ)
i.e.

b1
1b

2
2− b1

2b
2

1 = 1 b3
3b

4
4− b3

4b
4

3 = 1 (70)

b2
1b

1
1− b1

1b
2

1 = 0 b2
2b

1
2− b1

2b
2

2 = 0

b3
3b

4
3− b4

3b
3

3 = 0 b3
4b

4
4− b4

4b
3

4 = 0. (71)

Clearly (70) and (71) are equivalent to the condition (53), but (70) also implies automatically
unimodularity of the quantum determinant of each block in the matrixB.
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To determine theqij in (69) in terms of theµ-parameter in the quantum Clifford algebra,
we make use of (55) to obtain

x1 = φ2ψ1−√µψ1φ2 x2 = φ2ψ2− 1√
µ
ψ2φ2

x ′1 = −(φ1ψ2−√µψ2φ1) x ′2 = −µ
(
φ1ψ1− 1√

µ
ψ1φ1

)
. (72)

Requiring now that (72) satisfy the commutation relations (8), yields

q14 = q23 = q−1
24 = q−1

13 =
√
µ q12 = q34 = 1 (73)

and using these last relations in (49) defines completely the algebraBR.
We can next establish the group homomorphism by applying (56) and (59) (or,

equivalently, (58)); we thus get

t11 = b2
2b

3
3 t12 = b2

2b
3

4 t11′ = −b2
1b

3
4 t12′ = µ−1b2

1b
3

3

t21 = b2
2b

4
3 t22 = b2

2b
4

4 t21′ = −b2
1b

4
4 t22′ = µ−1b2

1b
4

3

t1
′
1 = −b1

2b
4

3 t1
′
2 = −b1

2b
4

4 t1
′
1′ = b1

1b
4

4 t1
′
2′ = −µ−1b1

1b
4

3 (74)

t2
′
1 = µb1

2b
3

3 t2
′
2 = µb1

2b
3

4 t2
′
1′ = −µb1

1b
3

4 t2
′
2′ = b1

1b
3

3.

It can be readily verified that (74) indeed satisfies the relations (10).
As the final step in the application of our procedure to the caseν = 2, we shall derive

the induced∗-structure for the signatures associated with the four-dimensional Minkowski
and Euclidean underlying spaces.

Minkowski space(ν = 2, h = 1). Here,µ ∈ R+ and

(x1)∗ = ψ1∗φ2∗ − √µφ2∗ψ1∗ = −b−1(φ1ψ2−√µψ2φ1)

(x2)∗ = ψ2∗φ2∗ − 1√
µ
φ2∗ψ2∗ = exp(−iϕ)

(
φ2ψ2− 1√

µ
ψ2φ2

)
(x ′2)∗ = µ

(
ψ1∗φ1∗ − 1√

µ
φ1∗ψ1∗

)
= µ exp(iϕ)

(
φ1ψ1− 1√

µ
ψ1φ1

)
from where it follows that

ψ1∗ = −
√
b−1 exp(iϕ/2)φ1 φ2∗ =

√
b−1 exp(−iϕ/2)ψ2. (75)

We now use (75) to derive the∗-structure of the algebraBR. Recalling the comodule action
requirement(δ(φi))∗ = δ(φi∗), and(δ(ψi))∗ = δ(ψi∗), it can be shown that

b1
1
∗ = b3

3 b1
2
∗ = −b eiϕb3

4 b2
1
∗ = −e−iϕ

b
b4

3 b2∗
2 = b4

4. (76)

It is a straightforward matter to verify that both the∗-structures (75) and (76) are compatible
with the algebrasSR̂ andBR, generated by (68) and (69) withqαβ given by (73).

Euclidean space(ν = 2, h = 0). In this caseµ is pure imaginary and (8) and (72) imply

ψ1∗ =
√
b2

b1
ψ2 φ1∗ =

√
µb1b2φ

2 (77)

while the comodule action requirement leads to

b1
1
∗ = b2

2 b1
2
∗ = (b1b2)b

2
1 b3

3
∗ = b4

4 b3
4
∗ = b2

b1
b4

3. (78)

Consistency of this∗-structure can also be checked immediately.
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A.2. Quantum spinµ(6− h, h) groups

In this case the spinor metric operator (43) becomes

C = H ′3H ′2H ′1− c1H1H
′
3H
′
2+ c2H2H

′
3H
′
1− c3H3H

′
2H
′
1

−c4H1H2H
′
3+ c5H1H3H

′
2− c6H2H3H

′
1+H1H2H3 (79)

where c1 = c6 = √µ12µ13, c2 = c5 = √µ12µ23, c3 = c4 = √µ13µ23. Using this, the
fundamental spinor bilinear has the form

ξTCξ = φ1ψ4+ ψ4φ1− c1ψ
1φ4− c6φ

4ψ1+ c2ψ
2ψ3

+c5φ
3ψ2− c3φ

3ψ2− c3ψ
3φ2− c4φ

2ψ3. (80)

The commutation relations between the spinors are similar to (68). However, in this case,
semi-spinors of the same type do not commute.

The isotropic coordinates given in terms of the spinors are

x1 = ψ4ψ1+ c5φ
3φ2− c4φ

2φ3− c1ψ
1ψ4

x2 = −ψ4ψ2− c6µ
−1
12φ

4φ2+ c4φ
2φ4+ c2µ

−1
12ψ

2ψ4

x3 = ψ4ψ3+ µ−1
13 c6φ

4φ3− c5µ
−1
23φ

3φ4− c3µ
−1
23µ

−1
23ψ

3ψ4 (81)

x ′1 = φ1φ4− c1φ
4φ1+ c2ψ

2ψ3− c3ψ
3ψ1

x ′2 = c5φ
3φ1+ µ12c3ψ

3ψ1− c1ψ
1ψ3− µ12φ

1φ3

x ′3 = −c4φ
2φ1− µ13c2ψ

2ψ1+ µ23c1ψ
1ψ2+ µ12µ23φ

1φ2.

The q parameters of deformation of the quantum Spin(6− h, h) groups are related to
theµ deformation parameters of theSOµ(6− h, h) groups by

q18 = q27 = q36 = q45 = 1 q12 = q28 = q−1
17 = q−1

78 = q23q24

q13 = q38 = q−1
16 = q−1

68 =
q34

q23
q34 = q46 = q−1

35 = q−1
56 =

√
µ23

µ12

q24 = q47 = q−1
25 = q−1

57 =
1√

µ12µ23
q23 = q37 = q−1

26 = q−1
67 =

√
µ12

µ23
(82)

q14 = q48 = q−1
15 = q−1

58 =
1

q34q24
.

The group homomorphism between the Spinµ(6− h, h) groups and theSOµ(6− h, h)
groups is given by

t1
′
1′ = b1

1b
4

4− q14b
4

1b
1

4

t1
′
2′ = c−1

5 (b1
3b

4
1− q14b

4
3b

1
1)

t1
′
3′ = µ−1

13µ
−1
23 (b

1
1b

4
2− q14b

4
1b

1
2)

t1
′
1 = c−1

5 (b1
3b

4
2− q14b

4
3b

1
2)

t1
′
2 = µ12c

−1
6 (b1

4b
4

2− q14b
4

4b
1

2)

t1
′
3 = µ13c

−1
6 (b1

4b
4

3− q14b
4

4b
1

3)

t2
′
1′ = c5b

3
1b

1
4− µ12b

1
1b

3
4

t2
′
2′ = −c−1

5 q13(c5b
3

1b
1

3− µ12b
1

1b
3

3)

t2
′
3′ = µ−1

13µ
−1
23 (c5b

3
1b

1
2− µ12b

1
1b

3
2)

t2
′
1 = −c−1

5 q23(c5b
3

2b
1

3− µ12b
1

2b
3

3)

t2
′
2 = −c−1

6 q24(c5b
3

2b
1

4− µ12b
1

2b
3

4)
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t2
′
3 = −c−1

6 q34µ13(c5b
3

1b
1

4− µ12b
1

1b
3

4)

t3
′
1′ = µ13µ23b

1
1b

2
4− c4b

2
1b

1
4

t3
′
2′ = −q13c

−1
5 (µ13µ23b

1
1b

2
3− c4b

2
1b

1
3)

t3
′
3′ = (b1

1b
2

2− c4µ
−1
13µ

−1
23 b

2
1b

1
2)

t3
′
1 = −q23c

−1
5 (µ13µ23b

1
2b

2
3− c4b

2
2b

1
3)

t3
′
2 = −q24µ12c

−1
6 (µ13µ23b

1
2b

2
4− c4b

2
2b

1
4)

t3
′
3 = −q34µ13c

−1
6 (µ13µ23b

1
3b

2
4− c4b

2
3b

1
4)

t11′ = c5b
3

1b
2

4− c4b
2

1b
3

4

t12′ = −q13c
−1
5 (c5b

3
1b

2
3− c4b

2
1b

3
3)

t13′ = µ−1
13µ

−1
23 (c5b

3
1b

2
2− c4b

2
1b

3
2)

t11 = −q13c
−1
5 (c5b

3
2b

2
3− c4b

2
2b

3
3)

t12 = −q24µ12c
−1
6 (c5b

3
2b

2
4− c4b

2
2b

3
4)

t13 = −q34µ13c
−1
6 (c5b

3
3b

2
4− c4b

2
3b

3
4)

t21′ = µ−1
12 c6b

4
1b

2
4− c4b

2
1b

4
4

t22′ = −q13c
−1
5 (µ−1

12 c6b
4

1b
2

3− c4b
2

1b
4

3)

t23′ = µ−1
13µ

−1
23 (µ

−1
12 c6b

4
1b

2
2− c4b

2
1b

4
2)

t21 = −q23c
−1
5 (µ−1

12 c6b
4

2b
2

3− c4b
2

2b
4

3)

t22 = −q24µ12c
−1
6 (µ−1

12 c6b
4

2b
2

4− c4b
2

2b
4

4)

t23 = −q34µ13c
−1
6 (µ−1

12 c6b
4

3b
2

4− c4b
2

3b
4

4)

t31′ = µ−1
13 c6b

4
1b

3
4− µ−1

23 c5b
3

1b
4

4

t32′ = −q13c
−1
5 (µ−1

13 c6b
4

1b
3

3− µ−1
23 c5b

3
1b

4
3)

t33′ = µ−1
13µ

−1
23 (µ

−1
13 c6b

4
1b

3
2− µ−1

23 c5b
3

1b
4

2)

t31 = −q23c
−1
5 (µ−1

13 c6b
4

2b
3

3− µ−1
23 c5b

3
2b

4
3)

t32 = −q24µ12c
−1
6 (µ−1

13 c6b
4

2b
3

4− µ−1
23 c5b

3
2b

4
4)

t33 = −q34µ13c
−1
6 (µ−1

13 c6b
4

3b
3

4− µ−1
23 c5b

3
3b

4
4).

The ∗-structure for the quantum spinors associated to a six-dimensional Minkowski
space is

φ1∗ = √µ23φ
2 φ4∗ = √µ12φ

3

ψ1∗ = (µ2
12µ23/µ13)

1/4ψ2 ψ4∗ = (µ13µ23)
1/4ψ3. (83)

A.3. Quantum Spinµ(8− h, h) groups

Applying requirements (i)–(iv) of our general procedure to the caseν = 4, we obtain

C = H1H2H3H4− a1H1H
′
4H
′
3H
′
2+ a2H2H

′
4H
′
3H
′
1− a3H3H

′
4H
′
2H
′
1+ a4H4H

′
3H
′
2H
′
1

−a5H1H2H
′
4H
′
3+ a6H1H3H

′
4H
′
2− a7H1H4H

′
3H
′
2− a8H2H3H

′
4H
′
1

+a9H2H4H
′
3H
′
1− a10H3H4H

′
2H
′
1+ a11H1H2H3H

′
4− a12H1H2H4H

′
3

−a13H2H3H4H
′
1+ a14H1H3H4H

′
2+H ′4H ′3H ′2H ′1

with

a1 = a13 = √µ14µ13µ12 a2 = a14 = √µ24µ23µ12



Quantum spinors and spin groups from quantum Clifford algebras 6471

a3 = a12 = √µ13µ23µ34 a4 = a11 = √µ14µ24µ34

a5 = a10 = √µ14µ13µ24µ23 a6 = a9 = √µ14µ23µ12µ34

a7 = a8 = √µ24µ34µ13µ12. (84)

The fundamental spinor bilinear is given by

ξTCξ = φ1φ8+ φ8φ1− a5φ
2φ7− a10φ

7φ2+ a6φ
3φ6+ a9φ

6φ3− a7φ
4φ5− a8φ

5φ4

−a1ψ
1ψ8− a13ψ

8ψ1+ a2ψ
2ψ7+ a14ψ

7ψ2− a3ψ
3ψ6− a12ψ

6ψ3

+a4ψ
4ψ5+ a11ψ

5ψ4. (85)

The isotropic coordinates expressed in terms of spinors are

x1 = φ8ψ1− a1ψ
1φ8+ a14ψ

7φ2− a5φ
2ψ7+ a6φ

3ψ6− a12ψ
6φ3

+a11ψ
5φ4− a7φ

4ψ5 (86)

x2 = φ8ψ2− a2µ
−1
12ψ

2φ8+ a13µ
−1
12ψ

8φ2− a5φ
2ψ8+ a8µ

−1
12φ

5ψ6

−a12ψ
6φ5+ a11ψ

5φ6− a9µ
−1
12φ

4ψ5 (87)

x3 = φ8ψ3− a3µ
−1
13µ

−1
23ψ

3φ8+ a13µ
−1
13ψ

8φ3− a6µ
−1
23φ

3ψ8+ a8µ
−1
13φ

5ψ7

−a14µ
−1
23ψ

7φ5+ a11ψ
5φ7− a10µ

−1
13µ

−1
23φ

7ψ5 (88)

x4 = φ8ψ4− a4µ
−1
14µ

−1
24µ

−1
34ψ

4φ8+ a13µ
−1
14ψ

8φ4− a7µ
−1
24µ

−1
34φ

4ψ8+ a9µ
−1
14µ

−1
34φ

6ψ7

−a14µ
−1
24ψ

7φ6+ a12µ
−1
34ψ

6φ7− a10µ
−1
14µ

−1
24φ

7ψ6 (89)

x ′1 = a2ψ
2φ7− a10φ

7ψ2+ a3ψ
3φ6+ a9φ

6ψ3+ a4ψ
4ψ5− a8φ

5ψ4

+a13ψ
8φ1+ φ1ψ8 (90)

x ′2 = a14ψ
7φ1− µ12φ

1ψ7+ a1ψ
1φ7+ a10µ12φ

7ψ1+ a3µ12ψ
3φ4− a7φ

4ψ3

−a4µ12ψ
4φ3+ a6φ

3ψ4 (91)

x ′3 = −a12ψ
6φ1+ µ13µ23φ

1ψ6+ a1µ23ψ
1φ6− a9µ13φ

6ψ1− a2µ13ψ
2ψ4

+a2µ23φ
4ψ2+ a4µ13µ23ψ

4φ2− a5φ
2ψ4 (92)

x ′4 = a11ψ
5φ1− µ14µ24µ34φ

1ψ5− a1µ24µ34ψ
1φ5+ a8µ14φ

5ψ1+ a2µ14µ24ψ
2φ3

−a6µ24φ
3ψ2− a3µ14µ24ψ

3φ2+ a5µ34φ
2ψ3. (93)

The relationship between the deformation parameters of the Spinµ(8−h, h) groups and the
µ-parameters of theSOµ(8− h, h) groups is

q18 = q27 = q36 = q45 = q9,16 = q10,15 = q11,14 = q12,13 = 1 (94)

q12 = q28 = q−1
17 = q−1

78 =
√

1

µ13µ14µ23µ24

q13 = q38 = q−1
16 = q−1

68 =
√

µ23

µ12µ14µ34

q14 = q48 = q−1
15 = q−1

58 =
√
µ24µ34

µ12µ13

q23 = q37 = q−1
26 = q−1

67 =
√
µ12µ24

µ13µ34

q24 = q47 = q−1
25 = q−1

57 =
√
µ12µ23µ34

µ14

q34 = q46 = q−1
35 = q−1

56 =
√
µ13µ24

µ14µ23
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q9,10 = q10,16 = q−1
9,15 = q−1

15,16 =
√
µ13µ14

µ23µ24

q9,11 = q11,16 = q−1
9,14 = q−1

14,16 =
√
µ12µ23µ14

µ34

q9,12 = q12,16 = q−1
9,13 = q−1

13,16 =
√
µ12µ24µ13µ34

q10,11 = q11,15 = q−1
10,14 = q−1

14,15 =
√
µ13µ24

µ12µ34

q10,12 = q12,15 = q−1
10,13 = q−1

13,15 =
√
µ14µ23µ34

µ12

q11,12 = q12,14 = q−1
11,13 = q−1

13,14 =
√
µ14µ24

µ13µ23

q1,9 = q8,16 = q−1
1,16 = q−1

8,9 =
√

1

µ14µ13µ12

q1,10 = q8,15 = q−1
1,15 = q−1

8,10 =
√

µ12

µ23µ24

q1,11 = q8,14 = q−1
1,14 = q−1

8,11 =
√
µ13µ23

µ34

q1,12 = q8,13 = q−1
1,13 = q−1

8,12 =
√
µ14µ24µ34

q2,9 = q7,16 = q−1
2,16 = q−1

7,9 =
√
µ12µ24µ23

q2,10 = q7,15 = q−1
2,15 = q−1

7,10 =
√
µ13µ14

µ12

q2,11 = q7,14 = q−1
2,14 = q−1

7,11 =
√
µ14µ24

µ34

q2,12 = q7,13 = q−1
2,13 = q−1

7,12 =
√
µ13µ23µ34

q3,9 = q6,9 = q−1
3,16 = q−1

6,16 =
√
µ13µ34

µ24

q3,10 = q6,15 = q−1
3,15 = q−1

6,10 =
√
µ14µ34

µ24

q3,11 = q6,14 = q−1
3,14 = q−1

6,11 =
√
µ12µ14

µ13

q3,12 = q6,13 = q−1
3,13 = q−1

6,12 =
√
µ24µ12

µ23

q4,9 = q5,16 = q−1
4,16 = q−1

5,9 =
√

µ14

µ34µ24

q4,10 = q5,15 = q−1
4,15 = q−1

5,10 =
√

µ13

µ23µ34

q4,11 = q5,14 = q−1
4,14 = q−1

5,11 =
√
µ23µ12

µ24

q4,12 = q5,13 = q−1
4,13 = q−1

5,12 =
√
µ12µ13

µ14
.
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The ∗-structure for the quantum spinors in an eight-dimensional space with Minkowski
signature is

(φ1)∗ = α1ψ5 (φ2)∗ = α2ψ3 (φ3)∗ = α3ψ2 (φ4)∗ = α4ψ8

(φ5)∗ = α4ψ1 (φ6)∗ = α3ψ7 (φ7)∗ = α2ψ6 (φ8)∗ = α4ψ8 (95)

with

α1 = (µ14µ24µ34)
1/4 α2 = −

(
µ2

13µ
2
23µ34

µ24µ14

)1/4

α3 =
(
µ2

12µ
2
23µ24

µ24µ14

)1/4

α4 = −
(
µ2

12µ
2
13µ14

µ24µ34

)1/4

. (96)
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